77 research outputs found

    Distributed Control for Multiagent Consensus Motions with Nonuniform Time Delays

    Get PDF
    This paper solves control problems of agents achieving consensus motions in presence of nonuniform time delays by obtaining the maximal tolerable delay value. Two types of consensus motions are considered: the rectilinear motion and the rotational motion. Unlike former results, this paper has remarkably reduced conservativeness of the consensus conditions provided in such form: for each system, if all the nonuniform time delays are bounded by the maximal tolerable delay value which is referred to as “delay margin,” the system will achieve consensus motion; otherwise, if all the delays exceed the delay margin, the system will be unstable. When discussing the system which is intended to achieve rotational consensus motion, an expanded system whose state variables are real numbers (those of the original system are complex numbers) is introduced, and corresponding consensus condition is given also in the form of delay margin. Numerical examples are provided to illustrate the results

    Distributed Robust H

    Get PDF
    Robust H∞ consensus control problem is investigated for multiagent systems. Each agent is tackled in a more generalized form, which includes parameter uncertainties, external disturbances, nonidentical time-varying state, and input delays. Firstly, a distributed control protocol based on state feedback of neighbors is designed. By a decoupling method, H∞ consensus control problem for multiagent systems is transformed into H∞ control problem for the decoupling subsystems. Then employing Lyapunov-Krasovskii functional and free-weighting matrices, a lower conservative bounded real lemma (BRL) is derived in terms of linear matrix inequalities (LMIs) such that a class of time-delay system is guaranteed to be globally asymptotically stable with the desired H∞ performance index. Extending BRL, a sufficient delay-dependent condition of lower complexity in terms of the matrix inequalities is obtained to make all agents asymptotically reach consensus with the desired H∞ performance index. Furthermore, an algorithm is elaborately designed to get feasible solution to this condition. Extending this algorithm, an optimization algorithm for control protocol parameter is proposed to improve the disturbance attenuation capacity or allowable delay bounds. Finally, simulation results are provided to illustrate the correctness of the theoretical results and the effectiveness of the algorithms

    Adaptive Tracking Control of Second-Order Multiagent Systems with Jointly Connected Topologies

    Get PDF
    This paper considers a consensus problem of leader-following multiagent system with unknown dynamics and jointly connected topologies. The multiagent system includes a self-active leader with an unknown acceleration and a group of autonomous followers with unknown time-varying disturbances; the network topology associated with the multiagent system is time varying and not strongly connected during each time interval. By using linearly parameterized models to describe the unknown dynamics of the leader and all followers, we propose a decentralized adaptive tracking control protocol by using only the relative position measurements and analyze the stability of the tracking error and convergence of the adaptive parameter estimators with the help of Lyapunov theory. Finally, some simulation results are presented to demonstrate the proposed adaptive tracking control

    Effects of Exogenous Calcium on Datura Seed Germination under Drought Stress

    Get PDF
    With polyethylene glycol (PEG-6000), of 0% (CK), 5%, 10%, 15%, 25% used to simulate drought stress, and CaCl2 concentration 0 (CK), of 15, 20, 25 and 30mmol/L as ion gradient of exogenous calcium, the effects of drought, exogenous calcium and the interaction between the two on the Datura seed germination, so as to explore the optimal application amount of exogenous calcium to ease the suppression of drought stress on Datura seed germination. The results showed that the germination rate, germination potential and germination index of the Datura seeds were significantly lower than those of the control group. Under the normal moisture condition, exogenous calcium of moderate and low concentration had no significant effect on the Datura seed germination, while that of high concentration showed an inhibitory effect on the seed germination. Under drought stress, with the increasing concentration of exogenous calcium, the three indicators of Datura seeds showed a trend of increasing first and then decreasing. When the exogenous calcium had the concentration of 20 mmol/L, all the indicators of seed germination reached the maximum value, while showed a downward trend when exogenous calcium concentration was 25-30 mmol/L, and even increasingly sharp with drought intensifying. Therefore, in the production and utilization of Datura, 20 mmol/L of exogenous calcium can be used to soak seeds before sowing to improve the emergence rate under low and moderate drought conditions

    Consensus of Fractional-Order Multiagent Systems with Nonuniform Time Delays

    Get PDF
    Due to the complex external environment, many multiagent systems cannot be precisely described or even cannot be described by an integer-order dynamical model and can only be described by a fractional-order dynamical model. In this paper, consensus problems are investigated for two types of fractional-order multiagent systems (FOMASs) with nonuniform time delays: FOMAS with symmetric time delays and undirected topology and FOMAS with asymmetric time delays and directed topology. Employing the Laplace transform and the frequency-domain theory, two delay margins are obtained to guarantee the consensus for the two types of FOMAS, respectively. These results are also suitable for the integer-order dynamical model. Finally, simulation results are provided to illustrate the effectiveness of our theoretical results

    The Effects of Temperature, Light and Moisture on the Seed Germination of Siphonostegia chinensis Benth.

    Get PDF
    To explore the optimum temperature, light intensityand water conditions for seed germination of Siphonostegia chinensis Benth.,seed germination experiment were carried out under different temperatures(5/15, 10/20, 15/25, 20/30℃), different light intensity(14h light/10h darkness, complete darkness)and different concentrations(0%, 5%, 10%, 15%, 20%)of PEG-6000 solution. In terms of concentration, 5% PEG was regarded as the low level, 10% and 15% as the medium level, and 20% as the high level. The results showed that (1) Germination rate, germination potential, and germination index were increased with the rise of temperature. In addition, seed germination was significantly higher under the dark conditions than that with the 14h light/10h darkness. (2) No seed germination occurred when the temperature was below 10/20 ºC at 14h light/10h darkness. (3) Under 14h light/10h darkness, the germination rate, germination potential and germination index first increased and then decreased with the increase of PEG concentration. The low concentration was more beneficial to the seed germination. (4) Under the condition of complete darkness, the germination rate, germination potential and germination index decline with fluctuation with the increase of PEG concentration. Seed germination of Siphonostegia chinensis Benth. was inhibited in high concentration of PEG

    Molecular Characterization, Phylogenetic, Expression, and Protective Immunity Analysis of OmpF, a Promising Candidate Immunogen Against Yersinia ruckeri Infection in Channel Catfish

    Get PDF
    Outer membrane porins, as the major components of Gram-negative bacterial membrane proteins, have been proven to be involved in interactions with the host immune system and potent protective antigen candidates against bacterial infection in fish. Outer membrane porin F (OmpF) is one of the major porins of Yersinia ruckeri (Y. ruckeri), the causative agent of enteric red mouth disease of salmonid and non-salmonid fish. In the present study, the molecular characterization and phylogenetic analysis of OmpF gene was studied, heterogenous expression, immunogenicity and protective immunity of OmpF were systemically evaluated as a subunit vaccine for channel catfish against Y. ruckeri infection. The results showed that OmpF gene was highly conserved among 15 known Yersinia species based on the analysis of conserved motifs, sequences alignment and phylogenetic tree, and was subjected to negative/purifying selection with global dN/dS ratios value of 0.649 throughout the evolution. Besides, OmpF was also identified to have immunogenicity by western blotting and was verified to be located on the surface of Y. ruckeri using cell surface staining and indirect immunofluorescence assays. Moreover, recombinant OmpF (rtOmpF) as a subunit vaccine was injected with commercial adjuvant ISA763, significantly enhanced the immune response by increasing serum antibody levels, lysozyme activity, complement C3 activity, total protein content, SOD activity, immune-related genes expression in the head kidney and spleen, and survival percent of channel catfish against Y. ruckeri infection. Thus, our present results not only enriched the information of molecular characterization and phylogenetics of OmpF, but also demonstrated that OmpF holds promise to be used as a potential antigen against Y. ruckeri infection in fish

    Robust Flight-Path Angle Consensus Tracking Control for Non-Minimum Phase Unmanned Fixed-Wing Aircraft Formation in the Presence of Measurement Errors

    No full text
    The robust flight-path angle consensus tracking control problem for multiple unmanned fixed-wing aircrafts is investigated in this paper, where the non-minimum phase properties and the presence of measurement errors are systematically addressed. A three-module control scheme is proposed for each aircraft: a Distributed Observer that obtains the available information from the reference system and the neighbor aircraft to provide the estimates of the reference states; a Casual Stable Inversion that calculates the bounded estimates of the desired input, desired external states, and most importantly, desired internal states to resolve the divergence issues caused by the non-minimum phase properties; and a Local Measurement Error Rejection Controller that includes a measurement error estimator (MEE) to actively compensate for the adverse effect of measurement errors to achieve robust consensus tracking control. Stability, convergence, and robustness of the proposed control are analyzed, showing that (1) the non-minimum phase issue can be systematically resolved by the designed Casual Stable Inversion to ensure aircraft internal stability and flight safety, and (2) the consensus tracking accuracy can be improved by tuning a single MEE parameter, which is favorable in practical applications to large-scale unmanned aircraft formations. Comparative simulation results with classic PID-based consensus control demonstrate the advantage of the proposed control in transient oscillations, steady-state tracking accuracy, and robustness against measurement errors

    Distributed Control of Networked Unmanned Aerial Vehicles for Valley Area Coverage

    No full text
    The paper provides a novel cooperative motion scheme for networked Unmanned Aerial Vehicles (UAVs) to fully sweep-cover a priori unknown elongated areas with curved borders, which are termed “valley areas.” The UAVs’ motion is confined between the borders. Different from former research on straight-corridor-sweep-coverage, in each valley area, the width of different portions varies dramatically: the UAVs need to line up across the valley area to achieve full coverage of the widest portions while they can only pass through the narrowest parts one by one in a queue. The UAVs are provided with barrier detection and inter-UAV communication. According to the scheme, a distributed control law has been offered for discrete-time multi-UAV systems, guaranteeing crash avoidance and full coverage while considering the constrained mobility of the UAVs. Regular and extreme simulations are carried out to verify the efficacy and stability of the proposed algorithm. Solutions to U-shaped valley coverage and the case of insufficient UAVs available are discussed with validation simulations. Comparison simulations are conducted with respect to a line-sweep-coverage algorithm developed by a closely related work, and differences in performance are revealed subsequently. Conclusions are drawn with possible directions of future research

    Parameter Estimation Algorithm for the Exponential Signal by the Enhanced DFT Approach

    No full text
    Based on enhanced interpolation DFT, a novel parameter estimation algorithm for the exponential signal is presented. The proposed two-step solution consists of a preprocessing unit which constructs a new signal sequence by continuously cycle shifting sample points and summing up N buffered exponential signal sample sequences, then an interpolation DFT engine to obtain accurate parameter estimation of the exponential signal based on the signal sequence generated by the preprocessing unit. Compared to previous works, owing to the combination of the pretreatment and the interpolation DFT analysis, the tedious iteration for spectral leakage elimination can be removed, and remarkable improvements are achieved in terms of estimation accuracy and speed. The simulation results verify the effectiveness of the proposed algorithm
    corecore