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This paper solves control problems of agents achieving consensus motions in presence of nonuniform time delays by obtaining the
maximal tolerable delay value. Two types of consensus motions are considered: the rectilinear motion and the rotational motion.
Unlike former results, this paper has remarkably reduced conservativeness of the consensus conditions provided in such form: for
each system, if all the nonuniform time delays are bounded by the maximal tolerable delay value which is referred to as “delay
margin,” the systemwill achieve consensus motion; otherwise, if all the delays exceed the delay margin, the systemwill be unstable.
When discussing the system which is intended to achieve rotational consensus motion, an expanded system whose state variables
are real numbers (those of the original system are complex numbers) is introduced, and corresponding consensus condition is given
also in the form of delay margin. Numerical examples are provided to illustrate the results.

1. Introduction

As one of the fundamental problems in the study of the coop-
erative control for multiagent systems, consensus problem
has received a fair amount of recent attention, because of its
applications in formation control [1], target tracking [2], and
sensor networks [3]. When researching consensus problems,
time delay is hardly amatter of rarity, andnumerous examples
[4–16] have attested to its prevalence. It then raises a question:
are the consensus conditions for the nondelayed systems still
applicable in presence of time delays?

The treatments of systems with time delays have been
widely studied, and researchers have developed diverse appli-
cable approaches to analyzing the system stability under the
occurrence of time delays, such as Lyapunov approach, the
approach based on the properties of nonnegative matrices,
and frequency domain approach. Lyapunov approach is a
powerful tool of time domain analysis, with which one can
easily handle nonlinearities and time-varying uncertainties.
The consensus problems of delayed systems in [4, 5, 7, 8, 10,
12, 13, 16] have been worked out by establishing Lyapunov
functions (functionals). Approaches based on the properties
of nonnegative matrices can be available to the cases of
dynamically changing topologies [15], but they are commonly

limited to discrete-time systems. Linear delay systems are dis-
cussed in greater length with frequency domain approaches
with which [6, 9, 11] have studied the stability of multia-
gent systems with time delays, and necessary and sufficient
conditions for these systems to reach consensus have been
derived. Usually, consensus conditions derived by Lyapunov-
based approaches are more likely to be conservative than the
ones obtained by frequency domain approaches.

Taking nonuniform time delays into account, the paper
investigates the consensus problems of multiagent systems
in terms of motion. We consider two types of consensus
motions: one is rectilinear motion, and the other is rotational
motion. In the two systems, the agents aim to collectively
move at a uniform velocity and angular speed, respectively,
depending on their initial states. These multiagent models
have found various applications, such as formation control for
unmanned aerial vehicles (UAVs), spacecraft docking, and
circular mobile sensor networks. The second order control
algorithms are extended from the previous works [11, 17], but
nonuniform time delays are considered.

An efficient frequency domain approach is employed to
derived sufficient conditions for these consensus problems.
The results are presented in the form of “delaymargins.” Each
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delaymargin is a derived value that if all the time delays in the
corresponding system are bounded by this value the system
will reach consensus, but if all the delays exceed this value
the agents will not achieve collective motion. Consequently,
one cannot find out a greater value that if all the delays are
bounded by that value the system still reaches consensus
always. In [18], the author discussed the stabilities of second-
order multiagent systems with nonuniform delays using
Lyapunov methods, and the results are presented in the form
of LinearMatrix Inequalities (LMIs), which are different from
ourwork.The previous publications [11, 19] have studiedmul-
tiagent systems with unstable modes, but nonuniform delays
have not been considered. Reference [17] has proposed the
rotating consensus algorithm, without consideration of delay
effects. The rotating consensus algorithm we adopt enables
the agents to achieve rotational consensus motion in the
complex plane. However, in many cases, complex numbers
cannot be processed by the processor.We expand the original
system by separating the real part and imaginary part of each
state variable. The new system has real state variables and
coefficient matrices. We finally provide consensus conditions
for the expanded system in the form of delay margin.

The remainder of this paper is organized as follows.
Section 2 presents some mathematical preliminaries for the
later proof, and with their help, we define the consensus
problems and then protocols are given for the second-order
multiagent systemswithmultiple timedelays. Section 3 shows
the stability analysis of the systems and discusses what will
happen to the system to achieve rectilinear consensusmotion
if the input delays are absent; this section also provides an
expansion to the system to reach rotating consensus, and this
additional result allows us to simulate the algorithms in an
easier way. Section 4 gives numerical simulations. Finally in
Section 5, some conclusions are drawn.

2. Model

Before presenting themodel, we first provide a brief narrative
on some definition and results in graph theory, which are
used extensively in the rest of this paper.

Consider a multiagent system consisting of 𝑛 agents.
The communication network topology among them is rep-
resented by an undirected graphG(V,E,A), which consists
of a set of nodesV = {𝑠

𝑖
}, 𝑖 ∈ I = {1, 2, . . . , 𝑛}, a set of edges

E ⊆ V × V, and a weighted adjacency matrix A = [𝑎
𝑖𝑘
],

where 𝑎
𝑖𝑖
= 0, and 𝑎

𝑖𝑘
= 𝑎
𝑘𝑖

≥ 0 (forG is undirected). 𝑎
𝑖𝑘

> 0

if and only if there exists an edge 𝑒
𝑖𝑘

∈ E between the 𝑖th
and 𝑘th nodes, which implies that they can get information
from each other. The set of neighbours of node 𝑠

𝑖
is denoted

by 𝑁
𝑖
≜ {𝑠
𝑘
∈ V : 𝑒

𝑘𝑖
∈ E}. The Laplacian associated with

the graph G is defined as 𝐿
𝜎

≜ [ℓ
𝑖𝑘
], where ℓ

𝑖𝑖
= ∑
𝑛

𝑘=1
𝑎
𝑖𝑘

and ℓ
𝑖𝑘

= −𝑎
𝑖𝑘
, 𝑖 ̸= 𝑘. A path is a sequence of ordered edges

𝑒
𝑟
1
𝑟
2

, 𝑒
𝑟
2
𝑟
3

, . . ., where 𝑒
𝑟
𝑖
𝑟
𝑖+1

∈ E. If there is a path between every
pair of nodes in graph G, the graph is said to be connected.
The lemma below is given by [20].

Lemma 1. If the undirected graph G is connected, then its
Laplacian 𝐿

𝜎
has one singleton zero eigenvalue (with eigenvec-

tor 1), and the rest of 𝑛 − 1 eigenvalues of 𝐿
𝜎
are all positive.

Consider 𝑛-agent systems with second-order dynamics:

�̇�
𝑖 (
𝑡) = V

𝑖 (
𝑡) ,

V̇
𝑖 (
𝑡) = 𝑢

𝑖 (
𝑡) ,

(1)

where 𝑥
𝑖
, V
𝑖
denote the position and velocity of the 𝑖th agent,

respectively, and 𝑢
𝑖
(𝑡) is the control input. Denoting the

state vector 𝜁
𝑖
(𝑡) ≜ [𝑥

𝑖
(𝑡), V
𝑖
(𝑡)]
𝑇, we assume that the initial

condition is 𝜁
𝑖
(𝑝) = 𝜁

𝑖
(0), for 𝑝 ∈ (−∞, 0].

Two goals have been set for the system to achieve: rec-
tilinear consensus motion and rotational consensus motion.
Clearly, the control input 𝑢

𝑖
(𝑡) decides the behavior of the

agents. We will propose two algorithms, respectively, for
the two goals; before that, we use mathematical symbols to
represent what will happen to the agents when the goals are
achieved.

For the first goal, rectilinear consensus motion, if
lim
𝑡→+∞

[𝜁
𝑖
(𝑡) − 𝜁

𝑘
(𝑡)] = 0 is satisfied for all 𝑖, 𝑘 ∈ I, the

control input 𝑢
𝑖
(𝑡) is said to solve the consensus problem

asymptotically [11]. System (1) under this control input is
referred to as “system 𝑌

1
” hereinafter. In fact, in some cases

(very extreme cases), the agents will not move collectively
but all stay at a point as a final state; it depends on the initial
conditions.

For the second goal, rotational consensus motion, the
consensus is reached if

lim
𝑡→+∞

[V
𝑖 (
𝑡) − V
𝑘 (

𝑡)] = 0,

lim
𝑡→+∞

{[𝑥
𝑖 (
𝑡) + 𝑤

−1
𝑗V
𝑖 (
𝑡)] − [𝑥

𝑘 (
𝑡) + 𝑤

−1
𝑗V
𝑘 (

𝑡)]}

= 0,

lim
𝑡→+∞

[V̇
𝑖 (
𝑡) − 𝑗𝑤V

𝑖 (
𝑡)] = 0

(2)

for all 𝑖, 𝑘 ∈ I, where𝑤 ∈ R+ is the constant angular velocity
in which all agents move around a common point together
[17]. We assume 𝑤 = 1 to simplify the future discussion.
System (1) under a control input to satisfy (2) is called “system
𝑌
2
” hereunder.
The state variables of agents in system 𝑌

1
are considered

in the real domain for convenience of calculation; that is,
𝑥
𝑖
, V
𝑖
∈ R in𝑌

1
. However, the agents in system𝑌

2
are intended

to achieve rotational consensus motion in the complex plane;
thus the state variables 𝑥

𝑖
, V
𝑖

∈ C are complex values for
system 𝑌

2
.

Taking nonuniform time delays into account, we modify
the corresponding protocols proposed in [11, 17] and give the
control inputs of our systems 𝑌

1
and 𝑌

2
as

For 𝑌
1
: 𝑢
𝑖 (
𝑡) = ∑

𝑠
𝑘
∈𝑁
𝑖

𝑎
𝑖𝑘
{𝑘
1
[𝑥
𝑖
(𝑡 − 𝜏
𝑖𝑘
) − 𝑥
𝑘
(𝑡 − 𝜏
𝑖𝑘
)]

+ 𝑘
2
[V
𝑖
(𝑡 − 𝜏
𝑖𝑘
) − V
𝑘
(𝑡 − 𝜏
𝑖𝑘
)]} ,

For 𝑌
2
: 𝑢
𝑖 (
𝑡) = 𝑗V

𝑖 (
𝑡) − ∑

𝑠
𝑘
∈𝑁
𝑖

𝑎
𝑖𝑘
[V
𝑖
(𝑡 − 𝜏
𝑖𝑘
)

− V
𝑘
(𝑡 − 𝜏
𝑖𝑘
)] ,
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− ∑

𝑠
𝑘
∈𝑁
𝑖

𝑎
𝑖𝑘
{[𝑥
𝑖
(𝑡 − 𝜏
𝑖𝑘
) + 𝑗V

𝑖
(𝑡 − 𝜏
𝑖𝑘
)]

− [𝑥
𝑘
(𝑡 − 𝜏
𝑖𝑘
) + 𝑗V

𝑘
(𝑡 − 𝜏
𝑖𝑘
)]} ,

(3)

for any 𝑖, 𝑘 ∈ I, where 𝑎
𝑖𝑘

> 0 denotes the edge weight, and
𝜏
𝑖𝑘

= 𝜏
𝑘𝑖
is the time delay for the 𝑖th agent to get the state

information of the 𝑘th agent. We also consider the system to
have 𝑀 different time delays, denoted by 𝜏

𝑚
∈ {𝜏
𝑖𝑘
, 𝑖, 𝑘 ∈

I} (𝑚 = 1, 2, . . . ,𝑀).
We use matrix notation to write the models of both

systems in compact form. To unify the form, we define

𝜓
1 (

𝑡)

≜ [𝑥
1 (

𝑡) , V1 (𝑡) , 𝑥2 (𝑡) , V2 (𝑡) , . . . , 𝑥𝑛 (𝑡) , V𝑛 (𝑡)]
𝑇
,

𝜓
2 (

𝑡) ≜ [𝑥
1 (

𝑡) , 𝑐1 (
𝑡) , 𝑥2 (

𝑡) , 𝑐2 (
𝑡) , . . . , 𝑥𝑛 (

𝑡) , 𝑐𝑛 (
𝑡)] ,

(4)

where 𝑐
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) + 𝑗V

𝑖
(𝑡) for all 𝑖 ∈ I. 𝜓

1
(𝑡) and 𝜓

2
(𝑡) are

the state vectors of system𝑌
1
and𝑌
2
, respectively. By defining

coefficient matrices

𝐴
1
≜ [

0 1

0 0

] ,

𝐵
1
≜ [

0 0

𝑘
1

𝑘
2

] ,

𝐴
2
≜ [

𝑗 −𝑗

0 0

] ,

𝐵
2
≜ [

0 0

−1 1 + 𝑗

] ,

(5)

system (1) under the control inputs (3) can be rewritten as

𝑌
𝑞
: �̇�
𝑞
(𝑡) = (𝐼

𝑛
⊗ 𝐴
𝑞
) 𝜓
𝑞 (

𝑡)

−

𝑀

∑

𝑚=1

(𝐿
𝜎𝑚

⊗ 𝐵
𝑞
) 𝜓
𝑞
(𝑡 − 𝜏
𝑚
) ,

(6)

for 𝑞 = 1, 2, with the initial condition 𝜓
𝑞
(𝑝) = 𝜓

𝑞
(0), 𝑝 ∈

(−∞, 0], where 𝐿
𝜎𝑚

denotes the Laplacian of a subgraph
associated with the delay 𝜏

𝑚
. Clearly, 𝐿

𝜎
= ∑
𝑀

𝑚=1
𝐿
𝜎𝑚

.
In this paper, the graphG is assumed to be connected and

undirected. Then according to Lemma 1, we suppose that the
eigenvalues of 𝐿

𝜎
are 0 = 𝜆

1
< 𝜆
2
≤ 𝜆
3
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑛
.

3. Main Results

In this section, we derive consensus conditions for systems
𝑌
𝑞
, 𝑞 = 1, 2, with a frequency domain approach. The

main idea of this method is to firstly prove the consensus
achievement of each systemwhen all the time delays are equal
to zero and then to calculate the delay margin to ensure that
if all the delays are under the bound of it, the stability of the
system will not be affected.

3.1. Consensus Conditions for the Original Systems. Firstly, we
investigate the stability of 𝑌

1
in absence of time delays. Let

Φ ≜ 𝐼
𝑛
⊗ 𝐴
1
− 𝐿
𝜎
⊗ 𝐵
1
, (7)

and then 𝑌
1
given by (6) (𝑞 = 1) with zero time delays can be

written as

�̇�
1
(𝑡) = Φ𝜓

1 (
𝑡) . (8)

Lemma 2. ThematrixΦ has a double eigenvalue at zero with
a single Jordan block, and all other eigenvalues have negative
real parts.

Proof. According to Lemma 1, there exists an orthogonal
matrix𝑊, such that

𝑊
𝑇
𝐿
𝜎
𝑊 = diag {0, 𝜆

2
, . . . , 𝜆

𝑛
} , (9)

and then it follows that

(𝑊 ⊗ 𝐼
𝑙
)
𝑇
Φ(𝑊 ⊗ 𝐼

𝑙
)

= diag {𝐴
1
, 𝐴
1
− 𝜆
2
𝐵
1
, . . . , 𝐴

1
− 𝜆
𝑛
𝐵
1
} .

(10)

Through simple calculations, we have

det (diag {𝐴
1
, 𝐴
1
− 𝜆
2
𝐵
1
, . . . , 𝐴

1
− 𝜆
𝑛
𝐵
1
})

= 𝑠
2

𝑛

∏

𝑖=2

𝑠
2
+ 𝜆
𝑖
𝑘
2
𝑠 + 𝜆
𝑖
𝑘
1
= 0.

(11)

The roots of each 𝑠
2
+ 𝜆
𝑖
𝑘
2
𝑠 + 𝜆
𝑖
𝑘
1
= 0 (𝑖 ≥ 2) are

−𝜆
𝑖
𝑘
2
± √(𝜆

𝑖
𝑘
2
)
2
− 4𝜆
𝑖
𝑘
1

2

.
(12)

Since 𝜆
𝑖
> 0 when 𝑖 ≥ 2, if (𝜆

𝑖
𝑘
2
)
2
< 4𝜆
𝑖
𝑘
1
, the real parts

of (12) are −𝜆
𝑖
𝑘
2
/2 < 0, and when (𝜆

𝑖
𝑘
2
)
2

≥ 4𝜆
𝑖
𝑘
1
, (12)

apparently are negative real numbers. Thus the polynomial
(11) has a double root at zero, and the real part of all other
roots is negative; then the lemma is proven.

Remark 3. According to Lemma 2, system (8) is unstable in
the sense of traditional control due to the existence of the zero
Jordan block in the system matrix. However, one can easily
obtain that the vectors 1

𝑛
⊗ [1, 0]

𝑇 and 1
𝑛
⊗ [0, 1]

𝑇 are the
eigenvectors associated with the zero eigenvalue. Therefore
the nondelayed system (8) finally converges to the space
spanned by the two vectors; that is, lim

𝑡→+∞
[𝜁
𝑖
(𝑡)−𝜁
𝑘
(𝑡)] = 0,

for all 𝑖, 𝑘 ∈ I. This has illustrated that the consensus is
reached.

Reference [17] has proven that system 𝑌
2
will achieve

rotational consensus motion when all the time delays are
absent. Then we summarize the results in the following
lemma.

Lemma 4. Consider a network of second-order agents with
fixed topology that is connected. Both of the multiagent systems
𝑌
𝑞
(𝑞 = 1, 2) given by (6) will reach consensus if all the delays

𝜏
𝑚

= 0, 𝑚 = 1, 2, . . . ,𝑀.
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The next step is to find out the conditions ensuring stable
consensus motions of both systems.

Theorem 5. Consider the second-order systems 𝑌
𝑞
, 𝑞 = 1, 2,

that, given by (6), the consensus problems are solved, if in each
system all the delays 𝜏

𝑚
are smaller than a corresponding value

𝜏
𝑞
, 𝑞 = 1, 2, where

for 𝑌
1
: 𝜏
1
=

[arctan ((𝑘
2
/𝑘
1
) 𝜔
1
)]

𝜔
1

,

𝜔
1
=

√
𝜆
2

𝑛
𝑘
2

2
+ √(𝜆

2

𝑛
𝑘
2

2
)
2
+ 4𝜆
2

𝑛
𝑘
2

1

2

;

for 𝑌
2
: 𝜏
2
=

[𝜋 − arctan (𝜔
2
/ (𝜔
2
− 1))]

𝜔
2

,

𝜔
2
=

1 + √1 + 4𝜆
2

𝑛
+ 4√𝜆

4

𝑛
+ 𝜆
2

𝑛

2

.

(13)

Proof. Consider the multiagent systems (6) with nonuniform
time delays. Take Ψ

𝑞
(𝑠) as the Laplace transform of 𝜓

𝑞
(𝑡); we

have Ψ
𝑞
(𝑠) = 𝐺

−1

𝜏𝑞
Ψ
𝑞
(0), where

𝐺
𝜏𝑞 (

𝑠) = 𝑠𝐼
2𝑛

− (𝐼
𝑛
⊗ 𝐴
𝑞
) +

𝑀

∑

𝑚=1

(𝐿
𝜎𝑚

⊗ 𝐵
𝑞
) 𝑒
−𝜏
𝑚
𝑠
, (14)

for 𝑞 = 1, 2. According to the foregoing discussions, to study
the stability of the delayed system, we only need to investigate
the values of 𝜏

𝑚
that guarantee the existence of nonzero roots

of 𝐺
𝜏𝑞
(𝑠) on imaginary axis, which represents the crossing of

the characteristic roots from the stable region to the unstable
one.The roots of characteristic polynomials such as𝐺

𝜏𝑞
(𝑠) are

hereinafter referred to as “the eigenvalues of the system.”
Suppose that, for each 𝑞 ∈ {1, 2}, 𝑠

𝑞
= 𝑗𝜔
𝑞

̸= 0 is an
imaginary root of𝐺

𝜏𝑞
(𝑠), and 𝑢

𝑞
= 𝑢
𝑞1
⊗[1, 0]

𝑇
+𝑢
𝑞2
⊗[0, 1]

𝑇 is
a corresponding eigenvector, where ‖𝑢

𝑞
‖ = 1, 𝑢

𝑞1
, 𝑢
𝑞2

∈ C𝑛.
Then we have

[𝑗𝜔
𝑞
𝐼
2𝑛

− (𝐼
𝑛
⊗ 𝐴
𝑞
) +

𝑀

∑

𝑚=1

(𝐿
𝜎𝑚

⊗ 𝐵
𝑞
) 𝑒
−𝑗𝜔
𝑞
𝜏
𝑚
]𝑢
𝑞

= 0.

(15)

Note that all the complex roots of each 𝐺
𝜏𝑞
(𝑠) appeared in

conjugated pairs; we only need to study the situation that𝜔
𝑞
>

0. Since the elements of the vector obtained by calculating the
left part of (15) equal zero, we have

𝑗𝜔
1
𝑢
11

= 𝑢
12
,

(1 − 𝜔
2
) 𝑢
21

= 𝑢
22
.

(16)

Multiplying by 𝑢
𝐻

𝑞
(the conjugate transpose of 𝑢

𝑞
) on the left

side of the left part of (15), and with (16) substituted, it yields

𝑀

∑

𝑚=1

𝛼
𝑚
𝑒
−𝑗𝜔
1
𝜏
𝑚
=

𝜔
2

1

𝑘
1
+ 𝑗𝜔
1
𝑘
2

,

𝑀

∑

𝑚=1

𝛼
𝑚
𝑒
−𝑗𝜔
2
𝜏
𝑚
=

−𝑗𝜔
2
(𝜔
2
− 1)

𝜔
2
+ 𝑗 (𝜔

2
− 1)

,

(17)

where

𝛼
𝑚

=

𝑢
𝐻

𝑞
(𝐿
𝜎𝑚

⊗ 𝐼
2
) 𝑢
𝑞

𝑢
𝐻

𝑞
𝑢
𝑞

. (18)

Equation (17) can be rewritten as

𝑀

∑

𝑚=1

𝛼
𝑚
𝑒
𝑗𝜔
1
𝜏
𝑚
=

𝜔
2

1

𝑘
1
− 𝑗𝜔
1
𝑘
2

≜ 𝐹
1
(𝜔
1
) ,

𝑀

∑

𝑚=1

𝛼
𝑚
𝑒
𝑗𝜔
2
𝜏
𝑚
=

𝑗𝜔
2
(𝜔
2
− 1)

𝜔
2
− 𝑗 (𝜔

2
− 1)

≜ 𝐹
2
(𝜔
2
) .

(19)

Take modulus of both sides of (19) to obtain

𝑀
𝑞
(𝜔
𝑞
) ≜






𝐹
𝑞
(𝜔
𝑞
)






=












𝑀

∑

𝑚=1

𝛼
𝑚
𝑒
𝑗𝜔
𝑞
𝜏
𝑚












≤












𝑀

∑

𝑚=1

𝛼
𝑚












=

𝑢
𝐻

𝑞
(𝐿
𝜎
⊗ 𝐼
𝑙
) 𝑢
𝑞

𝑢
𝐻

𝑞
𝑢
𝑞

≤ 𝜆
𝑛
,

(20)

for 𝑞 = 1, 2. After some calculation,we find that the inequality
𝑀
𝑞
(𝜔
𝑞
) ≤ 𝜆
𝑛
from (20) holds true if and only if 𝜔

𝑞
≤ 𝜔
𝑞
.This

is a necessary condition for our hypothesis to hold.
The idea now is to analyze the argument of each 𝐹

𝑞
(𝜔
𝑞
),

to find out how 𝜏
𝑚
affects the validity of our hypothesis that

the imaginary eigenvalues 𝑗𝜔
𝑞
exist. Calculate the arguments

of 𝐹
1
(𝜔
𝑞
); we get

𝜃
1
(𝜔
1
) ≜ arg [𝐹

1
(𝜔
1
)] = arctan(

𝑘
2

𝑘
1

𝜔
2
) ,

𝜃
2
(𝜔
2
) ≜ arg [𝐹

2
(𝜔
2
)]

=

{
{
{
{
{
{

{
{
{
{
{
{

{

arctan(

𝜔
2

1 − 𝜔
2

) , 𝜔
2
< 1,

𝜋

2

, 𝜔
2
= 1,

𝜋 − arctan(

𝜔
2

𝜔
2
− 1

) , 𝜔
2
> 1,

(21)

where 𝜃
𝑞
(𝜔
1
) ∈ [0, 2𝜋). Define 𝜏

𝑞
(𝜔
𝑞
) ≜ 𝜃

𝑞
(𝜔
𝑞
)/𝜔
𝑞
. Then

the following proves that, for each 𝑞 = 1, 2, 𝜏
𝑞

= 𝜏
𝑞
(𝜔
𝑞
) is



Mathematical Problems in Engineering 5

the minimal value of 𝜏
𝑞
(𝜔
𝑞
) when 𝜔

𝑞
≤ 𝜔
𝑞
. For system 𝑌

1
,

Let 𝑎 ≜ 𝑘
2
/𝑘
1
. Calculate derivative of 𝜏

1
(𝜔
1
):

𝐷
1
(𝜔
1
) ≜

𝑑 (𝜏
1
(𝜔
1
))

𝑑𝜔
1

=

𝑎

𝜔
1
(𝑎
2
𝜔
2

1
+ 1)

−

arctan (𝑎𝜔
1
)

𝜔
2

1

=

1

𝜔
2

1

[

𝑎𝜔
1

𝑎
2
𝜔
2

1
+ 1

− arctan (𝑎𝜔
1
)]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐷
2
(𝜔
1
)

,

(22)

and the derivative of𝐷
2
(𝜔
1
) is

𝑑 (𝐷
2
(𝜔
1
))

𝑑𝜔
1

= −

2𝑎
3
𝜔
2

1

(𝑎
2
𝜔
2

1
+ 1)
2
< 0. (23)

Thus 𝐷
2
(𝜔
1
) < 𝐷

2
(0) = 0 when 𝜔

1
> 0. Consequently,

𝐷
1
(𝜔
1
) = 𝐷

2
(𝜔
1
)/𝜔
2

1
< 0 when 𝜔

1
> 0, which means 𝜏

1
(𝜔
1
)

decreases as 𝜔
1
grows. Therefore we have 𝜏

1
= 𝜏
1
(𝜔
1
) ≤

𝜏
1
(𝜔
1
), when 𝜔

1
≤ 𝜔
1
. For system 𝑌

2
, when 𝜔

2
< 1, one can

easily calculate that 𝜏
2
(𝜔
2
) > 1 always holds; and when 𝜔

2
≥

1, 𝜏
2
(𝜔
2
) is monotonically decreasing from 𝜋/2; moreover,

when 𝜔 > 2, 𝜏
2
(𝜔
2
) < 1 (we omit the proof which is similar

to the one given above). Because the network of the system
is connected, 𝜆

𝑛
> 1 holds true; it follows that 𝜔

2
> 2.

Therefore, one cannot find a smaller value of 𝜏
2
(𝜔
2
) than

𝜏
2
= 𝜏
2
(𝜔
2
) when 𝜔

2
≤ 𝜔
2
.

Note that 𝜃
𝑞
(𝜔
𝑞
) are also the arguments of the left parts of

(19); if for each system we set all 𝜏
𝑚

< 𝜏
𝑞
, we have

𝜏
𝑞
(𝜔
𝑞
) =

𝜃
𝑞
(𝜔
𝑞
)

𝜔
𝑞

=

arg (∑𝑀
𝑚=1

𝛼
𝑚
𝑒
𝑗𝜔
𝑞
𝜏
𝑚
)

𝜔
𝑞

≤

max {𝜔
𝑞
𝜏
𝑚
}

𝜔
𝑞

<

𝜔
𝑞
𝜏
𝑞

𝜔
𝑞

= 𝜏
𝑞
,

(24)

for 𝑞 = 1, 2, which conflicts with the idea that 𝜏
𝑞
= 𝜏
𝑞
(𝜔
𝑞
) is

the minimal value of 𝜏
𝑞
(𝜔
𝑞
) when 𝜔

𝑞
≤ 𝜔
𝑞
; and this rejects

our hypothesis. Consequently, each of the two systems has
no nonzero imaginary eigenvalue when all the delays 𝜏

𝑚
<

𝜏
𝑞
. Following the continuity of function, the zero crossing of

eigenvalues from the left half plane to the right half plane has
been prevented, and the bounded delays will not bring about
instabilities to the systems.According to Lemma4, the system
can reach consensus with bounded delays, and the theorem is
proven.

In fact, for each system, if all 𝜏
𝑚

= 𝜏
𝑞
, then there

must exist an imaginary eigenvalue 𝑗𝜔
𝑞
and corresponding

eigenvector 𝑢
𝑞
that satisfy | ∑𝑀

𝑚=1
𝛼
𝑚
| = 𝜆
𝑛
. That is, according

to (19),

𝑀

∑

𝑚=1

𝛼
𝑚
𝑒
𝑗𝜔
𝑞
𝜏
𝑞
= 𝐹
𝑞
(𝜔
𝑞
) (25)

holds true.

Remark 6. 𝜏
𝑞
are termed the delay margins. If we draw

trajectories of the delays 𝜏
𝑚
that each value grows from 0 to

+∞, then the touch of 𝜏
𝑚

= 𝜏
𝑞
leads to the first contact of the

eigenvalues from the stable region to the unstable one. When
all the delays exceed 𝜏

𝑞
, the system will be unstable, because

there must exist at least one eigenvalue in the unstable region
(the RHP). The instabilities get worse with increasing 𝜏

𝑚
.

Remark 7. Reference [9] has provided a general method
of obtaining delay margins for delayed systems (including
nonuniform delays) to solve consensus problems, and the
method proposed in this paper is inspired by that idea.
However, only first-order systems have been considered in
[9], where the arguments of ∑𝛼

𝑚
𝑒
𝑗𝜔
𝑞
𝜏
𝑚 are bounded by the

simple 𝜋/2. In our paper, the arguments 𝜃
𝑞
(𝜔
𝑞
) are bounded

by variables changing with 𝜔
𝑞
; thus we have to find possible

maximal delay values related to 𝜔
𝑞
to cause the contradic-

tions. Reference [21] has discussed the consensus problem of
multiagent systems with delays using frequency approaches,
but the agent dynamics are only considered in the form of
single integrator, and the methods can not be directly used in
second-order systems. In the literatures [11, 22], the authors
studied the consensus problems of second-order systems
with uniform delays; however, the situations of multiple time
delays were not discussed. In [18], the stability analyses of
second-order multiagent systems with nonuniform delays
were performed using Lyapunov methods, and the results
were presented in the form of Linear Matrix Inequalities
(LMIs).

3.2. Consensus Phenomenon of System 𝑌
1
without Input

Delays. In many cases, the consensus is reached when all
agents converge on a point and stay. References [11, 19] have
proposed consensus algorithms enabling the vehicles to drive
together at a uniform velocity after their convergence. These
classical algorithms are then extensively applied in the subse-
quent works, such as the generalized use in [23] to solve the
tracking problem. Therefore exploring such basic algorithms
is very useful and the results can be generalized for many
applications. In this paper, the idea of 𝑌

1
comes from the

algorithm proposed in [11]; but we consider nonuniform time
delays. In our systems, each agent gets delayed information
from its neighbors, and besides these communication delays,
input delays also occur. Consequently, one may come up
with a question that what if the input delays are absent
while communication delays still occur. In this situation, the
control input of (1) for 𝑌

1
becomes

𝑢
𝑖 (
𝑡) = ∑

𝑠
𝑘
∈𝑁
𝑖

𝑎
𝑖𝑘
{𝑘
1
[𝑥
𝑖 (
𝑡) − 𝑥

𝑘
(𝑡 − 𝜏
𝑖𝑘
)]

+ 𝑘
2
[V
𝑖 (
𝑡) − V
𝑗
(𝑡 − 𝜏
𝑖𝑘
)]} .

(26)

Suppose that there is a time when all the agents are
moving forward together at the same point; then the value
of 𝑥
𝑖
(𝑡) − 𝑥

𝑘
(𝑡 − 𝜏
𝑖𝑘
) > 0 depends on the value of 𝜏

𝑖𝑘
and how

fast the agents move. If this happens, (26), which determines
the acceleration of each agent, will not equal zero, and it is
difficult for 𝑢

𝑖
(𝑡) and 𝑢

𝑘
(𝑡) (𝑖 ̸= 𝑘) to reach the same value due
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to the nonuniform delays. Then, in the next period of time,
the agents have to separate from each other because of their
different accelerations.

Simulations (see in Section 4) have shown a reasonable
consensus phenomenon when applying (26) to the system:
when appropriate delays are set to the system, the agentsmove
to get together at first, and then slow down until they stop at
the same point, which means that the agents will not finally
achieve a collective motion when the input delays are absent
while communication delays still occur.

3.3. Conditions for an Expanded System to Achieve Rotational
Consensus Motion. System 𝑌

2
given by (6) (𝑞 = 2) has

provided a solution that the agents are intended to perform a
rotational consensus motion in the complex plane. However,
in many practical cases, the processors of the systems do not
accept complex numbers directly; as an example, it is difficult
to draw a simulationmodel in theMATLAB for such a system
involving complex state variables. Commonly, we “expand”
the system by replacing each complex state variable with two
real variables: the real part and the imaginary part of the
original variable, respectively. The new system is equipped
with real coefficient matrices.

Denote the new state vector and coefficient matrices:

𝜓
2 (

𝑡) ≜ [Re (𝑥
1
) , Im (𝑥

1
) ,Re (𝑐

1
) , Im (𝑐

1
) ,Re (𝑥

2
) ,

Im (𝑥
2
) ,Re (𝑐

2
) , Im (𝑐

2
) , . . . ,Re (𝑥

𝑛
) , Im (𝑥

𝑛
) ,Re (𝑐

𝑛
) ,

Im (𝑐
𝑛
)] ,

𝐴
2
≜ Re (𝐴

2
) ⊗ 𝐼
2
+ Im (𝐴

2
) ⊗ 𝐸
2
,

𝐵
2
≜ Re (𝐵

2
) ⊗ 𝐼
2
+ Im (𝐵

2
) ⊗ 𝐸
2
,

(27)

where Re(⋅) and Im(⋅) mean the real and imaginary part of
the term enclosed, respectively, and

𝐸
2
≜ [

0 −1

1 0

] . (28)

We get the new system expanded from the system given
by (6) (𝑞 = 2):

̇
𝜓
2 (

𝑡) = (𝐼
𝑛
⊗ 𝐴
2
) 𝜓
2 (

𝑡)

−

𝑀

∑

𝑚=1

(𝐿
𝜎𝑚

⊗ 𝐵
2
) 𝜓
2
(𝑡 − 𝜏
𝑚
) .

(29)

Equation (29) is another form of𝑌
2
, and its state variables are

real values. Agents in system (29) behave like those in𝑌
2
given

by (6) (𝑞 = 2) when all the time delays are absent. Therefore,
in the light of the real state variables, we usually simulate the
expanded system instead of the original one. However, there
is a notable difference between the two systems. The amount

of eigenvalues of the new system (29) doubles that of (6) (𝑞 =

2). We introduce another related system for reference:

�̇�
2
(𝑡) = (𝐼

𝑛
⊗ 𝐴
∗

2
) 𝜓
2 (

𝑡)

−

𝑀

∑

𝑚=1

(𝐿
𝜎𝑚

⊗ 𝐵
∗

2
) 𝜓
2
(𝑡 − 𝜏
𝑚
) ,

(30)

where 𝐴
∗

2
and 𝐵

∗

2
are the the conjugate matrices of 𝐴

2

and 𝐵
2
, respectively. The subsequent lemma illustrates the

relationships among the three systems (6) (𝑞 = 2), (30), and
(29).

Lemma 8. There are 4𝑛 eigenvalues of system (29), which
consist of all the 2𝑛 eigenvalues of (6) (𝑞 = 2) and all the 2𝑛

eigenvalues of (30).

Proof. Suppose that 𝛾 is one eigenvalue of (6) (𝑞 = 2), and the
corresponding eigenvector is 𝛼. Then we have

[𝛾𝐼
2𝑛

− (𝐼
𝑛
⊗ 𝐴
2
) +

𝑀

∑

𝑚=1

(𝐿
𝜎𝑚

⊗ 𝐵
2
) 𝑒
−𝜏
𝑚
𝛾
]𝛼 = 0. (31)

Substituting 𝛾 into the characteristic polynomial of system
(29), and multiplying by 𝛼 ⊗ [𝑗, 1], it yields

[𝛾𝐼
4𝑛

− (𝐼
𝑛
⊗ 𝐴
2
) +

𝑀

∑

𝑚=1

(𝐿
𝜎𝑚

⊗ 𝐵
2
) 𝑒
−𝜏
𝑚
𝛾
] {𝛼

⊗ [𝑗, 1]}

= {[𝛾𝐼
2𝑛

− (𝐼
𝑛
⊗ 𝐴
2
) +

𝑀

∑

𝑚=1

(𝐿
𝜎𝑚

⊗ 𝐵
2
) 𝑒
−𝜏
𝑚
𝛾
]𝛼}

⊗ [𝑗, 1] = 0,

(32)

which implies that 𝛾 is an eigenvalue of system (29), and
𝛼 ⊗ [𝑗, 1] a corresponding eigenvector. It follows that the
eigenvalues of (6) (𝑞 = 2) also are the eigenvalues of (29). By
the same way, one can prove that each eigenvalue of system
(30), whose corresponding eigenvector is here denoted as
𝛼
𝑝
, is also an eigenvalue of (29), and 𝛼

𝑝
⊗ [−𝑗, 1] can be a

corresponding eigenvector. As the 2𝑛+2𝑛 = 4𝑛 eigenvalues fit
the system (29) in amount, and (29) has no other eigenvalues,
the lemma is proven.

Lemma 9. The expanded multiagent system (29) with real
state variables will reach consensus if all the time delays are
absent; that is, 𝜏

𝑚
= 0, 𝑚 = 1, 2, . . . ,𝑀.

Proof. When all the time delays equal zero, the eigenvalues of
system (30) are the conjugate numbers of the eigenvalues of
(6) (𝑞 = 2). As each conjugated pair has the same real parts,
the expanded system (29) has the same stability properties as
(6) (𝑞 = 2) when all time delays are absent, and the agents
will achieve rotational consensus motion.
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Theorem 10. Considering the multiagent system (29) expan-
ded from (6) (𝑞 = 2), it will reach consensus if all the delays
𝜏
𝑚

< 𝜏, where

𝜏 = min {𝜏
𝑑1
, 𝜏
𝑑2
} ,

𝜏
𝑑1

=

[𝜋 − arctan (𝜔
𝑑1
/ (𝜔
𝑑1

− 1))]

𝜔
𝑑1

,

𝜔
𝑑1

=

1 + √1 + 4𝜆
2

𝑛
+ 4√𝜆

4

𝑛
+ 𝜆
2

𝑛

2

,

𝜏
𝑑2

=

[arctan (𝜔
𝑑2
/ (𝜔
𝑑2

+ 1))]

𝜔
𝑑2

,

𝜔
𝑑2

=

−1 + √1 + 4𝜆
2

𝑛
+ 4√𝜆

4

𝑛
+ 𝜆
2

𝑛

2

.

(33)

Proof. Theorem 5 has proven that 𝜏
𝑑1

is the delay margin
ensuring that the eigenvalues of (6) (𝑞 = 2) are in the stable
region. We can also prove that the eigenvalues of system (30)
are in the stable region if all the delays are bounded by 𝜏

𝑑2
,

and the system will be unstable if all the delays exceed 𝜏
𝑑2
, by

the same way as in the proof of Theorem 5. Thus the proof is
omitted.

The foregoing discussions have helped us to understand
that when all the delays 𝜏

𝑚
< 𝜏, the eigenvalues of both

systems (6) (𝑞 = 2) and (30) are in the stable region.
According to Lemmas 8 and 9, system (30) can reach
consensus with nonuniform time delays bounded by 𝜏.

Remark 11. The theorem above has provided us with a delay
bound ensuring the consensus achievement. Note that both
𝜏
𝑑1

and 𝜏
𝑑2

are delay margins of the corresponding systems.
We set all the time delays of the expanded system (29) greater
than 𝜏; when these delays are put into the systems (6) (𝑞 =

2) and (30), at least one of the systems will have eigenvalues
in the unstable region; this will bring about the failure of the
expanded system (29) to achieve consensus motion. Hence 𝜏
is also the delay margin for the expanded system.

4. Numerical Examples

In this section, some simulations are carried out to evidence
the theoretical results obtained by the previous analysis.

Consider that a multiagent system consists of 4 agents,
whose communication topology is described in graph G
shown in Figure 1. The 1st-2nd and 3rd-4th agent pairs are
connected and the communication delay between each of
them is 𝜏

1
; the 2nd-3rd and 4th-1st agent pairs are connected

in presence of communication delay 𝜏
2
. Suppose the weight

of each edge onG is 1; then 𝜆
𝑛
= 4.

We start with 𝑌
1
given by (6) (𝑞 = 1). Let 𝑘

1
= 1.2 and

𝑘
2

= 1; then according to Theorem 5, the delay bound is
𝜏 = 0.31. Firstly, we set the nonuniform time delays labelled
on graphG as 𝜏

1
(𝑡) = 0.30, and 𝜏

2
(𝑡) = 0.29, which are under

the bound. Apparently, from the simulation results shown in

1 2

34

𝜏1

𝜏1

𝜏2 𝜏2

𝒢

Figure 1: The communication topology of the 4-agent system.

Figure 2, the consensus is reached. As a contrast example, we
change the value of delays to see whether the agents could
reach consensus again when the delays exceed the bound.
Here 𝜏

1
(𝑡) = 0.31 and 𝜏

2
(𝑡) = 0.32. Figure 3 has shown that

the agents fail to reach consensus.
To understand what actually happens to the multiagent

system when (26) is the control input of system (1), we set
𝑘
1
= 1.2, 𝑘

2
= 1, and the time delays 𝜏

1
(𝑡) = 0.01, 𝜏

2
(𝑡) =

0.04. The simulation results shown in Figure 4 indicate the
situation that is described in Section 3.2.

For the system to achieve rotational consensus motion,
we use the expanded system (29) as the simulation model.
According to Theorem 10, 𝜏 = 0.134. We also execute
the simulation twice: for the first time, we set 𝜏

1
(𝑡) =

0.12, 𝜏
2
(𝑡) = 0.13 as the bounded delays; and for the second

time, the delays are set as 𝜏
1
(𝑡) = 0.14, 𝜏

2
(𝑡) = 0.15 which

exceed the delaymargin.The results are shown in the first and
second pictures in Figure 5 separately, and they have validated
Theorem 10.

5. Conclusions

In this work, we studied two types of consensus problems
of multiagent systems with nonuniform time delays: one
makes the agents achieve a collective rectilinear motion, and
the other demands the agents to finally move rotationally.
We provided sufficient conditions in the form of delay
margins for the systems to reach consensus and carried out
simulations to show the instance of the results.

Frequency domain approaches are commonly limited to
linear systems. The proposed method is not compatible with
nonlinear systems. Further research will focus on consensus
problems of delayed multiagent systems with high-order
dynamics and directed topologies. High-order dynamics
will cause the occurrence of high-order polynomials in
(20); directed topologies will bring complex eigenvalues to
Laplacian𝐿

𝜎
and breakmonotonicity of 𝜃

𝑞
(𝜔
𝑞
). Nevertheless,

it is realistic to overcome these difficulties and adapt the
approach to such systems in the future as we explore proper
mathematical tools.
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Figure 2: The trajectories of the position and velocity in 𝑌
1
given by (6) (𝑞 = 1) when delays are under the bound.
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Figure 3: The trajectories of the position and velocity in 𝑌
1
given by (6) (𝑞 = 1) when delays exceed the bound.
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Figure 4: The trajectories of the position and velocity in the system (1) applying control input (26) where input delays are absent.



Mathematical Problems in Engineering 9

0 5−5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−60

−40

−20

0

20

40

60

80

40200 60 80−40 −20−60

×10
4

×10
4

Figure 5: The trajectories of the agents in the system to achieve rotational consensus motion given by (29).

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work has been supported by the Specialized Research
Fund for the Doctoral Program of Higher Education
(20130185110023).

References

[1] J. A. Fax and R. M. Murray, “Information flow and cooperative
control of vehicle formations,” IEEE Transactions on Automatic
Control, vol. 49, no. 9, pp. 1465–1476, 2004.

[2] Y. Hong, J. Hu, and L. Gao, “Tracking control for multi-
agent consensus with an active leader and variable topology,”
Automatica, vol. 42, no. 7, pp. 1177–1182, 2006.

[3] R. Olfati-Saber and J. S. Shamma, “Consensus filters for sensor
networks and distributed sensor fusion,” in Proceedings of
the 44th IEEE Conference on Decision and Control, and the
European Control Conference (CDC-ECC ’05), pp. 6698–6703,
IEEE, Seville, Spain, December 2005.

[4] H. Meng, Z. Chen, L. Zhu, and R. Middleton, “Consensus of a
class of second-order nonlinear heterogeneousmulti-agent sys-
tems with uncertainty and communication delay,” International
Journal of Robust and Nonlinear Control, 2016.

[5] B. Mirkin, P.-O. Gutman, and Y. Shtessel, “Asymptotic sliding
mode control approach to adaptive distributed tracking prob-
lem for multi-agent nonlinear delayed systems,” International
Journal of Control, vol. 85, no. 11, pp. 1671–1682, 2012.

[6] U. Münz, A. Papachristodoulou, and F. Allgöwer, “Generalized
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