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Robust 𝐻∞ consensus control problem is investigated for multiagent systems. Each agent is tackled in a more generalized
form, which includes parameter uncertainties, external disturbances, nonidentical time-varying state, and input delays. Firstly,
a distributed control protocol based on state feedback of neighbors is designed. By a decoupling method, 𝐻∞ consensus control
problem formultiagent systems is transformed into𝐻∞ control problem for the decoupling subsystems.Then employing Lyapunov-
Krasovskii functional and free-weighting matrices, a lower conservative bounded real lemma (BRL) is derived in terms of linear
matrix inequalities (LMIs) such that a class of time-delay system is guaranteed to be globally asymptotically stable with the
desired𝐻∞ performance index. Extending BRL, a sufficient delay-dependent condition of lower complexity in terms of the matrix
inequalities is obtained to make all agents asymptotically reach consensus with the desired𝐻∞ performance index. Furthermore,
an algorithm is elaborately designed to get feasible solution to this condition. Extending this algorithm, an optimization algorithm
for control protocol parameter is proposed to improve the disturbance attenuation capacity or allowable delay bounds. Finally,
simulation results are provided to illustrate the correctness of the theoretical results and the effectiveness of the algorithms.

1. Introduction

Consensus problem has attracted a great deal of attention due
to its enormous potential applications in many areas such
as flocking and swarming modeling [1], cooperative control
of unmanned air vehicles [2], and formation control of
multirobot systems [3]. In the past decade, a large number of
results have been obtained for consensus problem of various
multiagent systems, for example, consensus problems of
multiagent systems with different dynamics such as double-
integrator dynamics in [4] and Lipschitz nonlinear dynamics
in [5], consensus problems of multiagent systems with the
different network topologies such as random networks in
[6] and switching topology in [7], and consensus problems
of multiagent systems with the different time-delay such
as nonuniform time-varying delays in [8] and input and
communication delays in [9].

In practical applications, multiagent systems often have
disturbances, uncertainties and time-delay such as com-
munication noise, and uncertainties in network parameters

and time-delay caused by communication or measuring.
Moreover, the existence of these facts might destroy the
convergence properties of multiagent systems. Therefore,
it is significant to investigate robust consensus problems
of multiagent systems, which reflects the effects of these
facts on the behaviour of multiagent systems. In the past
decade, some interesting results have been obtained for
robust consensus problems. Lin et al. investigated robust𝐻∞ consensus analysis of directed networks of first-order
agents with time-delay and a class of second-ordermultiagent
systems with uncertainty in [10] and [11], respectively. Li et
al. investigated the distributed𝐻2 and𝐻∞ control problems
for multiagent systems with linear or linearized dynamics in
[12]. Liu and Jia investigated𝐻∞ consensus control problem
for multiagent systems with linear coupling dynamics and
communication delays in [13]. Wang et al. investigated
distributed robust 𝐻∞ control problem synthesized with
transient performance for a group of autonomous agents
governed by uncertain general linear node dynamics in
[14]. Hu et al. investigated the 𝐻∞ consensus problem for
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multiagent systems by means of a simultaneous stabilization
approach in [15]. Shi and Qin studied rotational motion of
multiagent systems with nonuniform time-delays in [16]. Li
et al. investigated distributed robust 𝐻∞ rotating consensus
control problem for directed networks of second-order agents
with mixed uncertainties and time-delay in [17]. However,
in [10, 11, 17], we could obtain the sufficient conditions
where the parameters of the control protocols should be
satisfied but their calculation method was not directly given.
In [12, 13, 15], the parameter uncertainties and time-varying
delay were not considered. In [16], uncertainty and external
disturbance were not considered. In [14], time-delay was not
considered. In addition, in practical applications, on one
hand, each agent itself may be a time-delay system, which
includes the state delay itself. On the other hand, due to
the introduction of the control protocol, the system often
contains the input delay. Furthermore, the state and input
delays often are nonidentical and time variant, which makes
the control problemmore challenging. So far, there exists rare
work dealing with robust𝐻∞ consensus control problem for
uncertainmultiagent systemswith nonidentical time-varying
state and input delays.

Motivated by the previous observations, this paper inves-
tigates robust 𝐻∞ consensus control problem for uncertain
multiagent systems, which is subject to parameter uncertain-
ties, external disturbances, and nonidentical time-varying
state and input delays. Firstly, a distributed control protocol
based on state feedback of neighbors is designed and the
closed-loop dynamics is built. By applying matrix theory
tools, multiagent system is decoupled and 𝐻∞ consensus
control problem for multiagent systems is transformed into𝐻∞ control problem for the decoupling subsystems. Then
employing Lyapunov-Krasovskii functional, Jensen integral
inequality, andNewton-Leibnitz formula with free-weighting
matrices, a lower conservative bounded real lemma (BRL)
is derived in terms of LMIs such that a class of time-delay
system is guaranteed to be globally asymptotically stable
with the desired 𝐻∞ performance index. Extending BRL, a
sufficient delay-dependent condition in terms of the matrix
inequalities, whose complexity is lower because the system
is decoupled, is obtained to make all agents asymptotically
reach consensus with the desired 𝐻∞ performance index.
Furthermore, an algorithm is elaborately designed to get fea-
sible solution to this condition by the cone-complementary
method. Extending this algorithm, an optimization algorithm
for control protocol parameter is proposed to improve the
disturbance attenuation capacity or allowable delay bounds.
At last, simulation results are provided to illustrate the
correctness of the theoretical results and the effectiveness of
the algorithms.

The following notations will be used throughout this
paper. 0𝑛 denotes the corresponding 𝑛 × 1 column vectors
whose elements are all zeros. 𝐼 and 0 denote identity matrix
and zero value or zero matrix with appropriate dimensions,
respectively. 𝐼𝑛 and 0𝑛 (0𝑛×𝑚) denote the 𝑛×𝑛 identity matrix
and the 𝑛 × 𝑛 (𝑛 × 𝑚) zero matrix, respectively. R𝑛 and
R𝑛×𝑚 denote the 𝑛-dimensional and the (𝑛×𝑚)-dimensional
Euclidean spaces, respectively. ‖ ⋅ ‖ refers to the standard
Euclidean norm for vectors. The notations × and ⊗ denote

the vector product and the Kronecker product, respectively.
The superscript 𝑇 and −1 stand for matrix transposition and
matrix inverse, respectively. In symmetric block matrices, ∗
is used as an ellipsis for terms induced by symmetry. The
notation diag{𝑀1, . . . ,𝑀𝑛} denotes a block diagonal matrix
whose diagonal blocks are given by𝑀1, . . . ,𝑀𝑛.
2. Preliminaries

In this section, some preliminary knowledge of graph theory
is introduced for the following analysis (referring to [18]). Let
G(V,E,A) be an undirected graph of order 𝑛, where V ={𝑠1, . . . , 𝑠𝑛} is the set of nodes, E ⊆ V ×V is the set of edges,
and A = [𝑎𝑖𝑗] ∈ R𝑛×𝑛 is a weighted adjacency matrix. The
node indexes belong to a finite index setI = {1, 2, . . . , 𝑛}. An
edge of G is denoted by 𝑒𝑖𝑗 = (𝑠𝑖, 𝑠𝑗), where the first element𝑠𝑖 of 𝑒𝑖𝑗 is said to be the tail of the edge and the other 𝑠𝑗 to be
the head. The adjacency elements are defined as 𝑎𝑖𝑖 = 0 and𝑎𝑖𝑗 = 𝑎𝑗𝑖 ⩾ 0. 𝑎𝑖𝑗 > 0 if and only if there is an edge between
node V𝑖 and node V𝑗.The Laplacian of the undirected graph is
defined as 𝐿 = Δ −A ∈ R𝑛×𝑛, where Δ = [Δ 𝑖𝑗] is a diagonal
matrix with Δ 𝑖𝑖 = ∑𝑛𝑗=1 𝑎𝑖𝑗. The set of neighbors of node 𝑠𝑖 is
denoted by 𝑁𝑖 = {𝑠𝑗 ∈ V : (𝑠𝑖, 𝑠𝑗) ∈ E}. If there is a path
from every node to every other node, the graph is said to be
connected.

3. Problem Statement

Consider a multiagent system consisting of 𝑛 agents. Each
agent is regarded as a node in a graph G. Each edge (𝑠𝑖, 𝑠𝑘) ∈
E corresponds to an available information channel between
agents 𝑠𝑖 and 𝑠𝑘. Suppose that the 𝑖th agent 𝑠𝑖 (𝑖 ∈ I, I ≜{1, 2, . . . , 𝑛}) has the dynamics as follows:

�̇�𝑖 (𝑡) = (𝐴 + Δ𝐴 (𝑡)) 𝑥𝑖 (𝑡)
+ (𝐴𝑑 + Δ𝐴𝑑 (𝑡)) 𝑥𝑖 (𝑡 − 𝑑1 (𝑡))
+ 𝐵1𝑢𝑖 (𝑡 − 𝑑2 (𝑡)) + 𝐵2𝑤𝑖 (𝑡) ,

(1)

0 < 𝑑1 (𝑡) ⩽ 𝜏1, ̇𝑑1 (𝑡) ⩽ 𝜇1, (2)

0 < 𝑑2 (𝑡) ⩽ 𝜏2, ̇𝑑2 (𝑡) ⩽ 𝜇2, (3)

where 𝑥𝑖(𝑡) = [𝑥𝑖1, . . . , 𝑥𝑖𝑚]𝑇 ∈ R𝑚 denotes the state of
the 𝑖th agent 𝑠𝑖, 𝑢𝑖(𝑡) = [𝑢𝑖1, . . . , 𝑢𝑖𝑚1]𝑇 ∈ R𝑚1 denotes the
control input (or control protocol) of the 𝑖th agent 𝑠𝑖, and𝐴, 𝐴𝑑, 𝐵1, and 𝐵2 are constant matrices with compatible
dimensions. 𝑑1(𝑡) denotes the state delay of the system itself,
which can be considered as the summation of computation
time and execution time. 𝑑2(𝑡) denotes the input delay, which
is caused by communication and measuring. 𝑤𝑖(𝑡) ∈ R𝑚2

denotes the external disturbances belonging to L2[0,∞).Δ𝐴(𝑡) and Δ𝐴𝑑(𝑡) are matrix valued function representing
time-varying parameter uncertainties. The parameter uncer-
tainties are assumed to be norm bounded and Δ𝐴(𝑡) =𝐺𝐹(𝑡)𝐸 and Δ𝐴𝑑(𝑡) = 𝐺𝑑𝐹(𝑡)𝐸𝑑, where 𝐺, 𝐺𝑑, 𝐸, and 𝐸𝑑
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are known constant matrices with appropriate dimensions,
which represent the structure of uncertainties, and 𝐹(𝑡) is
an unknown matrix function with Lebesgue measurable
elements satisfying 𝐹𝑇(𝑡)𝐹(𝑡) ⩽ 𝐼 for all 𝑡 ⩾ 0.
Remark 1. The system model (1) is a more generalized form.
On one hand, it can cover the first-order dynamics in [10],
second-order dynamics in [4, 11], and high-order dynamics in
[19]. On the other hand, compared with [12, 13, 15], it includes
the parameter uncertainties and nonidentical time-varying
delay, and compared with [8, 9, 16], it includes parameter
uncertainties and external disturbance.

Definition 2. Themultiagent system (1) reaches consensus, if
and only if the states of agents satisfy

lim
𝑡→+∞

(𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)) = 0 (4)

∀𝑖, 𝑗 ∈ I.

Define a vector function 𝑧(𝑡) = [𝑧𝑇1 (𝑡), . . . , 𝑧𝑇𝑛 (𝑡)]𝑇 ∈
R𝑚𝑛, where 𝑧𝑇𝑖 (𝑡) = [𝑧𝑖1, . . . , 𝑧𝑖𝑚]𝑇 ∈ R𝑚 measures the
disagreement of the state of the 𝑖th agent to the average state
of all agents for 𝑖 ∈ I and its value is as follows:

𝑧𝑖 (𝑡) = 𝑥𝑖 (𝑡) − 1𝑛
𝑛∑
𝑗=1

𝑥𝑗 (𝑡) . (5)

Note that if 𝑧(𝑡) = 0 can be satisfied, then 𝑥𝑖(𝑡) = 𝑥𝑗(𝑡)
holds ∀𝑖, 𝑗 ∈ I. That is to say, the multiagent system (1)
reaches consensus. This implies that 𝑧(𝑡) can quantitatively
reflect the disagreement degree of all agents on their states
and the norm of 𝑧(𝑡) indicates consensus performance.
Therefore, 𝑧(𝑡) is defined as the controlled output of the
multiagent system (1) for analysing its consensus behaviour.

Let

𝑥 (𝑡) = [𝑥𝑇1 (𝑡) , . . . , 𝑥𝑇𝑛 (𝑡)]𝑇 ∈ R
𝑚𝑛,

𝑢 (𝑡) = [𝑢𝑇1 (𝑡) , . . . , 𝑢𝑇𝑛 (𝑡)]𝑇 ∈ R
𝑚1𝑛,

𝑤 (𝑡) = [𝑤𝑇1 (𝑡) , . . . , 𝑤𝑇𝑛 (𝑡)]𝑇 ∈ R
𝑚2𝑛.

(6)

Then combining the dynamic equation (1) with controlled
output defined in (5) yields the following system in matrix
form:

�̇� (𝑡) = [𝐼𝑛 ⊗ (𝐴 + Δ𝐴 (𝑡))] 𝑥 (𝑡)
+ [𝐼𝑛 ⊗ (𝐴𝑑 + Δ𝐴𝑑 (𝑡))] 𝑥 (𝑡 − 𝑑1 (𝑡))
+ (𝐼𝑛 ⊗ 𝐵1) 𝑢 (𝑡 − 𝑑2 (𝑡)) + (𝐼𝑛 ⊗ 𝐵2) 𝑤 (𝑡) ,

𝑧 (𝑡) = (𝐶 ⊗ 𝐼𝑚) 𝑥 (𝑡) ,
(7)

where
𝐶 = [𝐶𝑖𝑗]𝑛𝑖,𝑗=1 ,

𝐶𝑖𝑗 = {{{{{
𝑛 − 1𝑛 , 𝑖 = 𝑗,
−1𝑛 , 𝑖 ̸= 𝑗.

(8)

According to robust control theory, the attenuating ability
of consensus performance for the multiagent system (1)
against external disturbances can be quantitatively measured
by the𝐻∞ norm of the closed-loop transfer function matrix𝑇𝑤𝑧(𝑠) from the external disturbance 𝑤(𝑡) to the controlled
output 𝑧(𝑡). In order to obtain prescribed performance
against external disturbances, we need to design a distributed
state feedback protocol 𝑢𝑖(𝑡) such that

𝑇𝑤𝑧 (𝑠)∞ < 𝛾 (9)

holds for a prescribed 𝐻∞ disturbance attenuation index𝛾 > 0, or equivalently, the closed-loop system satisfies the
following dissipation inequality:

∫∞
0
[𝑧𝑇 (𝑡) 𝑧 (𝑡) − 𝛾2𝑤𝑇 (𝑡) 𝑤 (𝑡)] 𝑑𝑡 < 0,

∀𝑤 (𝑡) ∈ L2 [0,∞) .
(10)

4. Main Results

In this section, we will solve 𝐻∞ consensus control prob-
lem for multiagent systems (7). Firstly, we will design a
distributed control protocol with an undetermined feedback
matrix 𝐾 and build the closed-loop dynamics of the sys-
tem. By applying matrix theory tools, multiagent system
is decoupled and 𝐻∞ consensus control problem for mul-
tiagent systems is transformed into 𝐻∞ control problem
for the decoupling subsystems. Then employing Lyapunov-
Krasovskii functional and free-weighting matrices, a BRL
will be derived in terms of LMIs such that a class of time-
delay system is guaranteed to be globally asymptotically stable
with the desired 𝐻∞ performance index. Extending BRL, a
sufficient delay-dependent condition in terms of the matrix
inequalities is obtained to make all agents asymptotically
reach consensus with the desired 𝐻∞ performance index.
Furthermore, an algorithm is elaborately designed to get
feasible solution to this condition. Extending this algorithm,
an optimization algorithm for control protocol parameter is
proposed to improve the disturbance attenuation capacity or
allowable delay bounds.

4.1. Protocol Design. To solve𝐻∞ consensus control problem
for the multiagent systems (1), the distributed control proto-
col is given as

𝑢𝑖 (𝑡) = 𝐾 ∑
𝑠𝑗∈𝑁𝑖

𝑎𝑖𝑗 (𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)) (11)

for 𝑖 ∈ I, where 𝐾 ∈ R𝑚1×𝑚 is an undetermined feedback
matrix and 𝑎𝑖𝑗 are the adjacency elements of interaction graph
G.

By substituting the protocol (11) into system (7), the
closed-loop dynamics of system (1) can be written as

�̇� (𝑡) = [𝐼𝑛 ⊗ (𝐴 + Δ𝐴 (𝑡))] 𝑥 (𝑡)
+ [𝐼𝑛 ⊗ (𝐴𝑑 + Δ𝐴𝑑 (𝑡))] 𝑥 (𝑡 − 𝑑1 (𝑡))
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− [𝐿 ⊗ (𝐵1𝐾)] 𝑥 (𝑡 − 𝑑2 (𝑡))
+ (𝐼𝑛 ⊗ 𝐵2) 𝑤 (𝑡)

𝑧 (𝑡) = (𝐶 ⊗ 𝐼𝑚) 𝑥 (𝑡) ,
(12)

where 𝐿 is the Laplacian matrix of the graphG.
On the basis of the above analysis, it is clear that the

multiagent system (1) reaches consensus while satisfying
the desired 𝐻∞ disturbance attenuation index 𝛾 by control
protocol (11), if and only if the closed-loop system (12) reaches
consensuswith the desired𝐻∞ disturbance attenuation index𝛾. In the next section, we will find design rules for 𝐾 such
that system (1) reaches consensus with the 𝐻∞ disturbance
attenuation index 𝛾.
4.2. Some Necessary Lemma

Lemma 3 (see [20]). Let 𝐿 be the Laplacian of an undirected
graph G. Then 𝐿 has at least one zero eigenvalue and all of
the nonzero eigenvalues are positive. Furthermore, matrix 𝐿
has exactly one zero eigenvalue if and only if the graph G is
connected, and the eigenvector associated with zero is 1.

Lemma 4 (see [10]). Consider the matrix 𝐶. The following
statements hold.

(a) The eigenvalues of 𝐶 are 1 with multiplicity 𝑛 − 1 and
0 with multiplicity 1. The vectors 1𝑇𝑛 and 1𝑛 are the
left and right eigenvectors of 𝐶 associated with the zero
eigenvalue, respectively.

(b) There exists an orthogonal matrix 𝑈 ∈ R𝑛×𝑛 such
that 𝑈𝑇𝐶𝑈 = [ 𝐼𝑛−1 0

0 0
] and the column is 1𝑛/√𝑛. LetΞ1 ∈ R𝑛×𝑛 be the Laplacian of any directed graph; then𝑈𝑇Ξ1𝑈 = [𝜐1 0] , 𝜐1 ∈ R𝑛×(𝑛−1).

For convenience, denote𝑈 = [𝑈1 𝑈1], where𝑈1 = 1𝑛/√𝑛
is the last column of𝑈 and𝑈1 ∈ R𝑛×(𝑛−1) is the remaining part.

Lemma 5 (Schur complement formula [21]). For a given
symmetric matrix 𝑆 with the form 𝑆 = [ 𝑆11 𝑆12∗ 𝑆22 ], 𝑆11 ∈
R𝑟×𝑟, 𝑆12 ∈ R𝑟×(𝑛−𝑟), and 𝑆22 ∈ R(𝑛−𝑟)×(𝑛−𝑟); then 𝑆 < 0 if
and only if 𝑆11 < 0 and 𝑆22 − 𝑆𝑇12𝑆−111 𝑆12 < 0 or 𝑆22 < 0
and 𝑆11 − 𝑆12𝑆−122 𝑆𝑇12 < 0.
4.3. System Decoupling

Theorem 6 (system decoupling). Assume that the interaction
graphG is connected. For a given 𝛾 > 0, the closed-loop system
(12) can reach consensus with the desired 𝐻∞ disturbance
attenuation index 𝛾, if the following 𝑛 − 1 subsystems are
simultaneously asymptotically stable with ‖𝑇𝑤𝑖�̂�𝑖(𝑠)‖∞ < 𝛾 for𝑖 = 1, 2, . . . , 𝑛 − 1.

̇̂𝛿𝑖 (𝑡) = (𝐴 + Δ𝐴 (𝑡)) 𝛿𝑖 (𝑡)
+ (𝐴𝑑 + Δ𝐴𝑑 (𝑡)) 𝛿𝑖 (𝑡 − 𝑑1 (𝑡))

− 𝜆𝑖𝐵1𝐾𝛿𝑖 (𝑡 − 𝑑2 (𝑡)) + 𝐵2𝑤𝑖 (𝑡) ,
�̂�𝑖 (𝑡) = 𝛿𝑖 (𝑡) ,

(13)

where 𝜆𝑖 (𝑖 = 1, 2, . . . , 𝑛 − 1) are the positive eigenvalues of the
Laplacian matrix 𝐿 and 𝛿𝑖(𝑡), 𝑤𝑖(𝑡), �̂�𝑖(𝑡) ∈ R𝑚.

Proof. SeeAppendix.

4.4. Delay-Dependent𝐻∞ Control. In order to investigate the𝐻∞ stability, let us consider a class of time-delay system as
follows:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐴ℎ𝑥 (𝑡 − ℎ (𝑡))
+ 𝐵𝑤𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) ,
0 < 𝑑 (𝑡) ⩽ 𝜏1, ̇𝑑 (𝑡) ⩽ 𝜇1,
0 < ℎ (𝑡) ⩽ 𝜏2,ℎ̇ (𝑡) ⩽ 𝜇2.

(14)

A bounded real lemma (BRL) will be derived in the following
part.

Lemma 7 (BRL). For a given 𝛾 > 0, the time-delay system
(14) is asymptotically stable with ‖𝑇𝑤𝑧(𝑠)‖∞ < 𝛾, if there exist
positive definite matrices 𝑃, 𝑄1, 𝑄2, 𝑅1, 𝑅2, 𝑆1, and 𝑆2 and
matrices𝑀1,𝑀2,𝑁1,𝑁2,𝑈1,𝑈2, 𝑉1, and 𝑉2 with appropriate
dimensions such that

Γ =
[[[[[[[[[[[
[

Γ0 Γ1 Γ2 Γ3 Γ4 Γ5∗ −𝑆 0 0 0 0
∗ ∗ −𝜏1𝑆1 0 0 0
∗ ∗ ∗ −𝜏1𝑆1 0 0
∗ ∗ ∗ ∗ −𝜏2𝑆2 0
∗ ∗ ∗ ∗ ∗ −𝜏2𝑆2

]]]]]]]]]]]
]

< 0, (15)

where 𝑆 = 𝜏1𝑆1 + 𝜏2𝑆2,

Γ0 =
[[[[[[[[[[[
[

Γ11 Γ12 Γ13 −𝑀1 −𝑈1 𝑃𝐵𝑤∗ Γ22 0 −𝑀2 0 0
∗ ∗ Γ33 0 −𝑈2 0
∗ ∗ ∗ −𝑅1 0 0
∗ ∗ ∗ ∗ −𝑅2 0
∗ ∗ ∗ ∗ ∗ −𝛾2𝐼

]]]]]]]]]]]
]

,



Mathematical Problems in Engineering 5

Γ1 = [𝑆𝐴, 𝑆𝐴𝑑, 𝑆𝐴ℎ, 0, 0, 𝑆𝐵𝑤]𝑇 ,
Γ2 = [𝜏1𝑀𝑇1 , 𝜏1𝑀𝑇2 , 0, 0, 0, 0]𝑇 ,
Γ3 = [𝜏1𝑁𝑇1 , 𝜏1𝑁𝑇2 , 0, 0, 0, 0]𝑇 ,
Γ4 = [𝜏2𝑈𝑇1 , 0, 𝜏2𝑈𝑇2 , 0, 0, 0]𝑇 ,
Γ5 = [𝜏2𝑉𝑇1 , 0, 𝜏2𝑉𝑇2 , 0, 0, 0]𝑇 ,
Γ11 = 𝑃𝐴 + 𝐴𝑇𝑃 + 𝑄1 + 𝑄2 + 𝑅1 + 𝑅2 + 𝑁1 + 𝑁𝑇1

+ 𝑉1 + 𝑉𝑇1 + 𝐶𝑇𝐶,
Γ12 = 𝑃𝐴𝑑 +𝑀1 − 𝑁1 + 𝑁𝑇2 ,
Γ13 = 𝑃𝐴ℎ + 𝑈1 − 𝑉1 + 𝑉𝑇2 ,
Γ22 = (𝜇1 − 1)𝑄1 +𝑀2 +𝑀𝑇2 − 𝑁2 − 𝑁𝑇2 ,
Γ33 = (𝜇2 − 1)𝑄2 + 𝑈2 + 𝑈𝑇2 − 𝑉2 − 𝑉𝑇2 .

(16)

Proof. See Appendix.

Theorem8. Assume that the interaction graphG is connected.
For given positive scalar constants 𝛾, by distributed protocol
(11), the multiagent system (1) can reach consensus with the
desired 𝐻∞ disturbance attenuation index 𝛾, if there exist
positive definite matrices 𝑄1, 𝑄2, 𝑅1, 𝑅2, 𝑆1, 𝑆2, 𝑇, 𝑋 ∈ R𝑚×𝑚,
matrices𝑀1,𝑀2, 𝑁1, 𝑁2, 𝑈1, 𝑈2, 𝑉1, 𝑉2 ∈ R𝑚×𝑚, 𝑌 ∈ R𝑚1×𝑚,
and positive scalars 𝜀1, 𝜀2 such that
Φ(𝑖)

=
[[[[[[[[[
[

Φ(𝑖)0 Π(𝑖)𝑇1 Π𝑇2 𝐻𝑇 𝐻𝑇𝑑
∗ −𝑇 + 𝜀1𝐺𝐺𝑇 + 𝜀2𝐺𝑑𝐺𝑇𝑑 0 0 0
∗ ∗ −𝑋𝑇−1𝑋 0 0
∗ ∗ ∗ −𝜀1𝐼 0
∗ ∗ ∗ ∗ −𝜀2𝐼

]]]]]]]]]
]

< 0,

(17)

where

Φ(𝑖)0 =

[[[[[[[[[[[[[[
[

Φ(𝑖)0𝑥 0 Φ1 Φ2 Φ3 Φ4 Φ5∗ −𝑆 0 0 0 0 0
∗ ∗ −𝜏1𝑆1 0 0 0 0
∗ ∗ ∗ −𝜏1𝑆1 0 0 0
∗ ∗ ∗ ∗ −𝜏2𝑆2 0 0
∗ ∗ ∗ ∗ ∗ −𝜏2𝑆2 0
∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]]]]]]]]]]]]]]
]

,

Φ(𝑖)0𝑥 =
[[[[[[[[[[[
[

Φ11 Φ12 Φ(𝑖)13 −𝑀1 −𝑈1 𝐵2∗ Φ22 0 −𝑀2 0 0
∗ ∗ Φ33 0 −𝑈2 0
∗ ∗ ∗ −𝑅1 0 0
∗ ∗ ∗ ∗ −𝑅2 0
∗ ∗ ∗ ∗ ∗ −𝛾2𝐼

]]]]]]]]]]]
]

,

𝑆 = 𝜏1𝑆1 + 𝜏2𝑆2,
Φ11 = 𝐴𝑋 + 𝑋𝐴𝑇 + 𝑄1 + 𝑄2 + 𝑅1 + 𝑅2 + 𝑁1 + 𝑁𝑇1

+ 𝑉1 + 𝑉𝑇1 + 𝜀1𝐺𝐺𝑇 + 𝜀2𝐺𝑑𝐺𝑇𝑑 ,
Φ12 = 𝐴𝑑𝑋 +𝑀1 − 𝑁1 + 𝑁𝑇2 ,
Φ(𝑖)13 = −𝜆𝑖𝐵1𝑌 + 𝑈1 − 𝑉1 + 𝑉𝑇2 ,
Φ22 = (𝜇1 − 1)𝑄1 +𝑀2 +𝑀𝑇2 − 𝑁2 − 𝑁𝑇2 ,
Φ33 = (𝜇2 − 1)𝑄2 + 𝑈2 + 𝑈𝑇2 − 𝑉2 − 𝑉𝑇2 ,
Φ1 = [𝜏1𝑀𝑇1 , 𝜏1𝑀𝑇2 , 0, 0, 0, 0]𝑇 ,
Φ2 = [𝜏1𝑁𝑇1 , 𝜏1𝑁𝑇2 , 0, 0, 0, 0]𝑇 ,
Φ3 = [𝜏2𝑈𝑇1 , 0, 𝜏2𝑈𝑇2 , 0, 0, 0]𝑇 ,
Φ4 = [𝜏2𝑉𝑇1 , 0, 𝜏2𝑉𝑇2 , 0, 0, 0]𝑇 ,
Φ5 = [𝑋, 0, 0, 0, 0, 0]𝑇 ,
Π(𝑖)1 = [𝐴𝑋 + 𝜀1𝐺𝐺𝑇 + 𝜀2𝐺𝑑𝐺𝑇𝑑 , 𝐴𝑑𝑋,

− 𝜆𝑖𝐵1𝑌, 0, 0, 𝐵2, 0, 0, 0, 0, 0, 0] ,
Π2 = [0, 0, 0, 0, 0, 0, 𝜏1𝑆1 + 𝜏2𝑆2, 0, 0, 0, 0, 0] ,
𝐻 = [𝐸𝑋, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ,
𝐻𝑑 = [0, 𝐸𝑑𝑋, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] .

(18)

Furthermore, the feedback matrix 𝐾 in the proposed control
protocol (11) can be designed by 𝐾 = 𝑌𝑋−1.
Proof. See Appendix.

4.5. Algorithm of Solving Delay-Dependent Condition. In the
following section, an algorithm will be designed to get the
feasible solution to the matrix inequality condition (17).

Due to the existence of nonlinear entry 𝑋𝑇−1𝑋, the
matrix inequality condition (17) is not yet in the form of an
LMI. Therefore, we cannot directly use LMI method to solve
the matrix inequality (17). But we can turn this problem into
the LMI optimization problem by the cone-complementary
linearization algorithm [22].
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Define a new positive definitematrix variable𝑊 such that𝑊 ⩽ 𝑋𝑇−1𝑋. It is easy to derive that 𝑊−1 − 𝑋−1𝑇𝑋−1 ⩾ 0.
Furthermore, by defining 𝑋 ≜ 𝑋−1, 𝑇 ≜ 𝑇−1, and 𝑊 ≜ 𝑊−1
and using Lemma 5 (Schur complement formula), we can
turn condition (17) into

[[[[[[[[
[

Φ(𝑖)0 Π(𝑖)𝑇1 Π𝑇2 𝐻𝑇 𝐻𝑇𝑑
∗ −𝑇 + 𝜀1𝐺𝐺𝑇 + 𝜀2𝐺𝑑𝐺𝑇𝑑 0 0 0
∗ ∗ −𝑊 0 0
∗ ∗ ∗ −𝜀1𝐼 0
∗ ∗ ∗ ∗ −𝜀2𝐼

]]]]]]]]
]

< 0,

(19)

[𝑊 𝑋
𝑋 𝑇] ⩾ 0,

[𝑋 𝐼
𝐼 𝑋] ⩾ 0,

[𝑇 𝐼
𝐼 𝑇] ⩾ 0,

[𝑊 𝐼
𝐼 𝑊] ⩾ 0.

(20)

Then, we may solve the following optimization problem and
find a feasible solution satisfying𝑊 ⩽ 𝑋𝑇−1𝑋:

min Trace (𝑋𝑋 + 𝑇𝑇 +𝑊𝑊)
s.t. (19) , (20) . (21)

In a word, in order to solve the matrix inequality condi-
tion (17), an algorithm is designed as follows.

Algorithm 9. (1) Solve the LMI (19) and (20) for given
positive scalar constants 𝜏1, 𝜏2, 𝜇1, 𝜇2, and 𝛾. There exists a
feasible solution set {𝑋0, 𝑋0, 𝑇0, 𝑇0,𝑊0,𝑊0} and set 𝑘 = 0.

(2) Solve the following optimization problem for the
variables

{𝑋,𝑋, 𝑇, 𝑇,𝑊,𝑊}
min Trace (𝑋𝑘𝑋 + 𝑇𝑘𝑇 +𝑊𝑘𝑊+𝑋𝑋𝑘 + 𝑇𝑇𝑘 +𝑊𝑊𝑘)
s.t. (19) , (20)

(22)

and set 𝑋𝑘+1 = 𝑋, 𝑋𝑘+1 = 𝑋, 𝑇𝑘+1 = 𝑇, 𝑇𝑘+1 = 𝑇, 𝑊𝑘+1 =𝑊, and 𝑊𝑘+1 = 𝑊.
(3) If 𝑊 ⩽ 𝑋𝑇−1𝑋 for the above solution set, then save

the current 𝑋, 𝑌 and exit. Otherwise, set 𝑘 = 𝑘 + 1, go
to Step (2), and repeat the optimization for a prescribed
maximum iterative number 𝑘max until finding a feasible
solution satisfying𝑊 ⩽ 𝑋𝑇−1𝑋. If such a solution does not
exist, then exit.

If a feasible solution set is found by Algorithm 9, given
the disturbance attenuation index 𝛾 and delay parameters 𝜏1,𝜏2, 𝜇1, and 𝜇2, by distributed protocol (11), the multiagent
system (1) can reach consensus with the desired 𝐻∞ distur-
bance attenuation index 𝛾 and the feedback matrix can be
constructed by 𝐾 = 𝑌𝑋−1.
4.6. Optimization for 𝐻∞ Control Parameters. According
to Theorem 8, assume that delay parameters 𝜏1, 𝜏2, 𝜇1,
and 𝜇2 have been given; in order to achieve a minimum𝐻∞ disturbance attenuation index 𝛾, we can solve the
following optimization problem for the positive definite deci-
sion variables 𝑄1, 𝑄2, 𝑅1, 𝑅2, 𝑆1, 𝑆2, 𝑇, 𝑋 ∈ R𝑚×𝑚, matrices𝑀1,𝑀2, 𝑁1, 𝑁2, 𝑈1, 𝑈2, 𝑉1, 𝑉2 ∈ R𝑚×𝑚, 𝑌 ∈ R𝑚1×𝑚, and
positive scalars 𝜀1, 𝜀2:

min 𝛾
s.t. (17) . (23)

Because the matrix inequality condition (17) is not yet in
the form of an LMI, we cannot find global minima for the
optimization problem (23) using convex optimization algo-
rithms. However, by the similar methods to Algorithm 9, we
may still obtain a suboptimal controller for the optimization
problem (23) using an iterative algorithm presented in the
following sequel.

Algorithm 10. (1) Assume that the delay parameters 𝜏1,𝜏2, 𝜇1, and 𝜇2 have been given. Choose a sufficiently
large initial 𝛾 such that there exists a feasible solution set{𝑋0, 𝑋0, 𝑇0, 𝑇0,𝑊0,𝑊0} to the LMIs (19) and (20). Set 𝑘 = 0.

(2) Solve the optimization problem (22) and set 𝑋𝑘+1 =𝑋, 𝑋𝑘+1 = 𝑋, 𝑇𝑘+1 = 𝑇, 𝑇𝑘+1 = 𝑇, 𝑊𝑘+1 = 𝑊, and𝑊𝑘+1 =𝑊.
(3) If 𝑊 ⩽ 𝑋𝑇−1𝑋 for the above solution set, then

set 𝛾min = 𝛾 and return to Step (1) after decreasing 𝛾 =𝛾 − Δ𝛾, where Δ𝛾 is predefined step-sizes. Otherwise, set𝑘 = 𝑘 + 1, go to Step (2), and repeat the optimization for a
prescribed maximum iterative number 𝑘max until finding a
feasible solution satisfying 𝑊 ⩽ 𝑋𝑇−1𝑋. If such a solution
does not exist, then exit.

If a feasible solution set is found by Algorithm 10, for
the given delay parameters 𝜏1, 𝜏2, 𝜇1, and 𝜇2, by distributed
protocol (11), the multiagent system (1) can reach consensus
with the suboptimal𝐻∞ disturbance attenuation index 𝛾min
and the suboptimal feedback matrix can be constructed by𝐾 = 𝑌𝑋−1.
Remark 11. Assuming that the disturbance attenuation index𝛾 and delay parameters 𝜇1 (or the proportion coefficient of 𝜇1
and 𝜏1), 𝜏2, and 𝜇2 have been given, we can raise the maxi-
mum allowable delay bound to 𝜏1max and the corresponding
feedback matrix 𝐾 = 𝑌𝑋−1 by the similar methods to Algo-
rithm 10. Similarly, we also can raise the maximum allowable
delay bound to 𝜏2max and the corresponding feedback matrix𝐾 = 𝑌𝑋−1.
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5. Simulation Results

To illustrate the correctness of the theoretical results and the
effectiveness of the algorithms, numerical simulations will be
given in this section. Consider a multiagent system with four
agents and the dynamics of each agent is described by (1), with

𝐴𝑑 =
[[[[[
[

0 0.2 0 0
0 0 0.5 0
0 0 0 0.5
0 0 0.5 0

]]]]]
]
,

𝐵1 =
[[[[[
[

0 0
1 0
1 1
0 1

]]]]]
]
,

𝐵2 =
[[[[[
[

0 0
0.5 0
0.2 0.5
0 0.2

]]]]]
]
,

𝐴 = [[[[[
[

0 1 0 0
0 0 2 0
0 0 0 2
0 0 −2 0

]]]]]
]
,

𝐺 = 𝐺𝑑 =
[[[[[
[

0 0.01 0 0
0 0 0.02 0
0 0 0 0.03
0 0 0.01 0

]]]]]
]
,

𝐹 (𝑡) = diag {sin 10𝑡, sin 20𝑡, cos 10𝑡, cos 20𝑡} ,
𝐸 = 𝐸𝑑 = 𝐼4.

(24)

The connected interaction graph G is shown in Figure 1,
whose nonzero weighting factors 𝑎𝑖𝑗 are all 1. So the corre-
sponding Laplacian matrix is

𝐿 = [[[[[
[

2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

]]]]]
]
. (25)

So its smallest and largest nonzero eigenvalues are 𝜆1 = 2 and𝜆3 = 4, respectively. We assume that the external disturbance

𝑤 (𝑡) = [1, 1.2, 0.8, 1.5, 1, 1.4, 2, 1.2]𝑇 𝜀 (𝑡) ,
𝜀 (𝑡) = {{{

1, 0 ⩽ 𝑡 ⩽ 1
0, otherwise

(26)

21

34

Figure 1: The communication topology.

and the initial state of the multiagent system is taken as 𝑥(𝑡 =0) = 016.

Example 12. Suppose that the𝐻∞ performance index 𝛾 = 1,
the delay 𝑑1(𝑡) = 0.1 sin 𝑡, and 𝑑2(𝑡) = 0.15 cos 𝑡 (so 𝜏1 = 𝜇1 =0.1 and 𝜏2 = 𝜇2 = 0.15). By Theorem 8 and Algorithm 9, we
can figure out the feedback matrix 𝐾 in the control protocol
(11) as follows:

𝐾 = 𝑌𝑋−1
= [ 0.5103 1.0701 0.8234 −0.1057

−0.3108 −0.6331 −0.3141 0.8557 ] .
(27)

On the one hand, Figure 2 shows the trajectories of𝑧𝑖(𝑡) = [𝑧𝑖1, . . . , 𝑧𝑖4]𝑇 when 𝛾 = 1, 𝑑1(𝑡) = 0.1 sin 𝑡,
and 𝑑2(𝑡) = 0.15 cos 𝑡 for all 𝑖 = 1, 2, 3, 4, where 𝑧𝑖𝑘 =𝑥𝑖𝑘(𝑡) − (1/𝑛)∑𝑛𝑗=1 𝑥𝑗𝑘(𝑡), 𝑘 = 1, 2, 3, 4. It is clear that
consensus is asymptotically achieved for the multiagent
systems. On the other hand, Figure 3 shows the energy
relation of the controlled output and the external disturbance.
Obviously, the closed-loop system satisfies ∫∞

0
[𝑧𝑇(𝑡)𝑧(𝑡) −

𝛾2𝑤𝑇(𝑡)𝑤(𝑡)]𝑑𝑡 < 0; that is, the 𝐻∞ disturbance attenua-
tion index is achieved. Therefore, applying the distributed
protocol (11) and calculating the feedback matrix 𝐾 by
Theorem controller synthesis theorem and Algorithm 9, the
multiagent system can reach consensus while satisfying the
desired 𝐻∞ disturbance attenuation index 𝛾 = 1. So we
validate the correctness of Theorem 8 and the effectiveness
of Algorithm 9.

Example 13. Suppose that the delay 𝑑1(𝑡) = 0.1 sin 𝑡 and𝑑2(𝑡) = 0.15 cos 𝑡 (so 𝜏1 = 𝜇1 = 0.1 and 𝜏2 = 𝜇2 =0.15). Using the distributed protocol (11) and optimizing the
feedback matrix 𝐾 by Algorithm 10, we can figure out the
suboptimal𝐻∞ disturbance attenuation index 𝛾min = 0.7 and
the corresponding feedback matrix as follows:

𝐾 = 𝑌𝑋−1
= [ 0.6677 1.2483 0.7142 −0.1105

−0.3815 −0.6790 −0.1872 0.8701 ] .
(28)

Figure 3 shows the energy relation of the controlled
output and the external disturbance. Obviously, the 𝐻∞
disturbance attenuation index is smaller than its value in
Example 12. That is to say, by Algorithm 10, the disturbance
attenuation capacity of the multiagent system (1) is obviously
improved. So the effectiveness of Algorithm 10 is validated.
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Figure 2: The trajectories of 𝑧𝑖(𝑡) = [𝑧𝑖1, . . . , 𝑧𝑖4]𝑇 in Example 12.

6. Conclusion

This paper studies robust 𝐻∞ consensus control problem
for multiagent systems with parameter uncertainties, exter-
nal disturbances, nonidentical time-varying state, and input
delays. The main contributions of this paper are as follows:
first, considering a more generalized form, which includes
parameter uncertainties, external disturbances, nonidentical
time-varying state, and input delays; second, a lower conser-
vative BRL; third, a lower complexity delay-dependent con-
trol condition; fourth, an algorithm for calculating parame-
ters of control protocol; fifth, an optimization algorithm for
improving the disturbance attenuation capacity or allowable

delay bounds. In further research, we will research robust𝐻∞ consensus control problem for multiagent systems with
heterogeneous uncertainties and nonuniform time-varying
delays.

Appendix

Proof of Theorem 6. Let

𝛿 (𝑡) = 𝑥 (𝑡) − 1𝑛𝑛 ⊗ ( 𝑛∑
𝑖=1

𝑥𝑖 (𝑡))
= (𝐶 ⊗ 𝐼𝑚) 𝑥 (𝑡) ,
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Figure 3: The energy trajectories of the controlled output 𝑧(𝑡) and
the external disturbance 𝑤(𝑡) in four examples.

[ 𝛿 (𝑡)
𝛿𝑛 (𝑡) ] = (𝑈

𝑇 ⊗ 𝐼𝑚) 𝛿 (𝑡) ,

[ 𝑤 (𝑡)𝑤𝑛 (𝑡)] = (𝑈
𝑇 ⊗ 𝐼𝑚)𝑤 (𝑡) ,

[ 𝑧 (𝑡)
𝑧𝑛 (𝑡) ] = (𝑈

𝑇 ⊗ 𝐼𝑚) 𝑧 (𝑡) .
(A.1)

By Lemmas 3 and 4, we know that 0 is a common eigenvalue
of 𝐿 and𝐶when the graphG is connected, and𝑈1 = 1𝑛/√𝑛 is
a common eigenvector associated with 0. Therefore, it is easy
to derive that 𝐿1𝑛 = 𝐶1𝑛 = 0 and 𝑈𝑇𝐶𝐿𝑈 = 𝑈𝑇𝐶𝑈𝑈𝑇𝐿𝑈 =[ 𝑈𝑇1 𝐿𝑈1 0
0 0

]. Denote 𝐿 = 𝑈𝑇1 𝐿𝑈1, 𝐴1 = A + Δ𝐴(𝑡), and 𝐴2 =𝐴𝑑 + Δ𝐴𝑑(𝑡). Then combining with system (12), we have

[
[
�̇� (𝑡)
�̇�𝑛 (𝑡)

]
]
= (𝑈𝑇 ⊗ 𝐼𝑚) (𝐶 ⊗ 𝐼𝑚) �̇� (𝑡) = (𝑈𝑇𝐶 ⊗ 𝐼𝑚)

⋅ [(𝐼𝑛 ⊗ 𝐴1) 𝑥 (𝑡) + (𝐼𝑛 ⊗ 𝐴2) 𝑥 (𝑡 − 𝑑1 (𝑡)) − 𝐿
⊗ (𝐵1𝐾)𝑥 (𝑡 − 𝑑2 (𝑡)) + (𝐼𝑛 ⊗ 𝐵2) 𝑤 (𝑡)] = (𝑈𝑇𝐶
⊗ 𝐴1) [𝛿 (𝑡) + 1𝑛𝑛 ⊗ ( 𝑛∑

𝑖=1

𝑥𝑖 (𝑡))] + (𝑈𝑇𝐶 ⊗ 𝐴2)

⋅ [𝛿 (𝑡 − 𝑑1 (𝑡)) + 1𝑛𝑛 ⊗ ( 𝑛∑
𝑖=1

𝑥𝑖 (𝑡 − 𝑑1 (𝑡)))]

− [𝑈𝑇𝐶𝐿 ⊗ (𝐵1𝐾)] [𝛿 (𝑡 − 𝑑2 (𝑡)) + 1𝑛𝑛

⊗ ( 𝑛∑
𝑖=1

𝑥𝑖 (𝑡 − 𝑑2 (𝑡)))] + (𝑈𝑇𝐶 ⊗ 𝐵2)𝑤 (𝑡)

= (𝑈𝑇𝐶 ⊗ 𝐴1) (𝑈 ⊗ 𝐼𝑚) [ 𝛿 (𝑡)𝛿𝑛 (𝑡)] + (𝑈
𝑇𝐶 ⊗ 𝐴2)

⋅ (𝑈 ⊗ 𝐼𝑚) [ 𝛿 (𝑡 − 𝑑1 (𝑡))𝛿𝑛 (𝑡 − 𝑑1 (𝑡))] − [𝑈
𝑇𝐶𝐿 ⊗ (𝐵1𝐾)]

⋅ (𝑈 ⊗ 𝐼𝑚) [ 𝛿 (𝑡 − 𝑑2 (𝑡))𝛿𝑛 (𝑡 − 𝑑2 (𝑡))] + (𝑈
𝑇𝐶 ⊗ 𝐵2) (𝑈

⊗ 𝐼𝑚) [ 𝑤 (𝑡)𝑤𝑛 (𝑡)] = ([
𝐼𝑛−1 00 0] ⊗ 𝐴1)[

𝛿 (𝑡)
𝛿𝑛 (𝑡)]

+ ([𝐼𝑛−1 00 0] ⊗ 𝐴2)[
𝛿 (𝑡 − 𝑑1 (𝑡))
𝛿𝑛 (𝑡 − 𝑑1 (𝑡))]

− ([𝐿 0
0 0] ⊗ 𝐵1𝐾)[

𝛿 (𝑡 − 𝑑2 (𝑡))
𝛿𝑛 (𝑡 − 𝑑2 (𝑡))]

+ ([𝐼𝑛−1 00 0] ⊗ 𝐵2)[
𝑤 (𝑡)
𝑤𝑛 (𝑡)] ,

(A.2)

[ 𝑧 (𝑡)𝑧𝑛 (𝑡)] = (𝑈
𝑇 ⊗ 𝐼𝑚) 𝑧 (𝑡) = (𝑈𝑇 ⊗ 𝐼𝑚) (𝐶 ⊗ 𝐼𝑚)

⋅ 𝑥 (𝑡) = (𝑈𝑇𝐶 ⊗ 𝐼𝑚) [𝛿 (𝑡) + 1𝑛𝑛 ⊗ ( 𝑛∑
𝑖=1

𝑥𝑖 (𝑡))]

= (𝑈𝑇 ⊗ 𝐼𝑚) (𝑈 ⊗ 𝐼𝑚) [ 𝛿 (𝑡)𝛿𝑛 (𝑡)] = ([
𝐼𝑛−1 00 0]

⊗ 𝐼𝑚)[ 𝛿 (𝑡)𝛿𝑛 (𝑡)] .

(A.3)

Due to the fact that the rows of �̇�𝑛(𝑡) and 𝑧𝑛(𝑡) are all 0
in (A.2) and (A.3), we can obtain the reduced-order system
(A.4) that is equivalent to a system, which is made up of (A.2)
and (A.3), regarding the𝐻∞ performance. Considering that𝛿(𝑡) = (𝑈𝑇1 ⊗ 𝐼𝑚)𝛿(𝑡), 𝛿(𝑡) = 𝑥(𝑡) − (1𝑛/𝑛) ⊗ (∑𝑛𝑖=1 𝑥𝑖(𝑡)),
and 𝑈𝑇1 𝑈1 = 𝐼𝑛−1, it is easy to derive that 𝛿(𝑡) = 0 leads to𝑥(𝑡) = (1𝑛/𝑛) ⊗ (∑𝑛𝑖=1 𝑥𝑖(𝑡)). So system (12) reaches consensus
if system (A.4) is asymptotically stable. In addition, by𝑤(𝑡) =(𝑈𝑇1 ⊗ 𝐼𝑚)𝑤(𝑡), 𝑧(𝑡) = (𝑈𝑇1 ⊗ 𝐼𝑚)𝑧(𝑡), and (A.2) and (A.3), it
can be easily proved that 𝑇𝑤𝑧(𝑠) = (𝑈𝑇1 ⊗𝐼𝑚)𝑇𝑤𝑧(𝑈𝑇1 ⊗𝐼𝑚). So‖𝑇𝑤𝑧(𝑠)‖∞ = ‖𝑇𝑤𝑧(𝑠)‖∞.

Therefore, the closed-loop system (12) reaches consen-
sus with the desired 𝐻∞ disturbance attenuation index 𝛾
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(‖𝑇𝑤𝑧(𝑠)‖∞ < 𝛾), if the following system is asymptotically
stable with ‖𝑇𝑤𝑧(𝑠)‖∞ < 𝛾.

�̇� (𝑡) = [𝐼𝑛−1 ⊗ (𝐴 + Δ𝐴 (𝑡))] 𝛿 (𝑡)
+ [𝐼𝑛−1 ⊗ (𝐴𝑑 + Δ𝐴𝑑 (𝑡))] 𝛿 (𝑡 − 𝑑1 (𝑡))
− [𝐿 ⊗ (𝐵1𝐾)] 𝛿 (𝑡 − 𝑑2 (𝑡))
+ (𝐼𝑛−1 ⊗ 𝐵2) 𝑤 (𝑡) ,

𝑧 (𝑡) = 𝛿 (𝑡) ,

(A.4)

where 𝐿 = 𝑈𝑇1 𝐿𝑈1 and 𝛿(𝑡), 𝑤(𝑡), 𝑧(𝑡) ∈ R𝑚(𝑛−1).
When the interaction graph G is connected, the matrix𝐿 = 𝑈𝑇1 𝐿𝑈1 is positive definite and its eigenvalues are the

positive eigenvalues of the Laplacian matrix 𝐿 by Lemmas
3 and 4. Then there exists an orthogonal matrix 𝑈2 ∈
R(𝑛−1)×(𝑛−1) such that

𝑈𝑇2 𝐿𝑈2 = diag {𝜆1, . . . , 𝜆𝑛−1} ≜ Λ, (A.5)

where 0 < 𝜆1 ⩽ ⋅ ⋅ ⋅ ⩽ 𝜆𝑛−1.
Let

𝛿 (𝑡) = (𝑈𝑇2 ⊗ 𝐼𝑚) 𝛿 (𝑡) ≜ [𝛿𝑇1 (𝑡) , . . . , 𝛿𝑇𝑛−1 (𝑡)]𝑇 ,
𝑤 (𝑡) = (𝑈𝑇2 ⊗ 𝐼𝑚)𝑤 (𝑡) ≜ [𝑤𝑇1 (𝑡) , . . . , 𝑤𝑇𝑛−1 (𝑡)]𝑇 ,
�̂� (𝑡) = (𝑈𝑇2 ⊗ 𝐼𝑚) 𝑧 (𝑡) ≜ [�̂�𝑇1 (𝑡) , . . . , �̂�𝑇𝑛−1 (𝑡)]𝑇 .

(A.6)

Then system (A.4) can be rewritten in terms of 𝛿(𝑡), 𝑤(𝑡), and�̂�(𝑡) as follows:
̇̂𝛿 (𝑡) = [𝐼𝑛−1 ⊗ (𝐴 + Δ𝐴 (𝑡))] 𝛿 (𝑡)

+ [𝐼𝑛−1 ⊗ (𝐴𝑑 + Δ𝐴𝑑 (𝑡))] 𝛿 (𝑡 − 𝑑1 (𝑡))
− [Λ ⊗ (𝐵1𝐾)] 𝛿 (𝑡 − 𝑑2 (𝑡))
+ (𝐼𝑛−1 ⊗ 𝐵2) 𝑤 (𝑡) ,

𝑧 (𝑡) = 𝛿 (𝑡) .

(A.7)

By the variable substitution in (A.6), we know that 𝛿(𝑡)
is asymptotically stable if 𝛿(𝑡) is asymptotically stable. In
addition, it is easy to derive that 𝑇𝑤 �̂� = (𝑈𝑇2 ⊗ 𝐼𝑚)𝑇𝑤 𝑧(𝑈2 ⊗𝐼𝑚). So ‖𝑇𝑤 �̂�(𝑠)‖∞ = ‖𝑇𝑤𝑧(𝑠)‖∞. Therefore, system (A.4) is
asymptotically stable with ‖𝑇𝑤𝑧(𝑠)‖∞ < 𝛾, if system (A.7) is
asymptotically stable with ‖𝑇𝑤 �̂�(𝑠)‖∞ < 𝛾.

Due to the diagonal property of matrix Λ, system (A.7)
realises the complete decoupling of state variables 𝛿𝑖(𝑡). So
system (A.7) is asymptotically stable if its 𝑛 − 1 diagonal
subsystems (13) are simultaneously asymptotically stable.
Besides that, it follows from (13), (A.6), and (A.7) that 𝑇𝑤 �̂� =
diag{𝑇𝑤1�̂�1 , . . . , 𝑇𝑤𝑛−1�̂�𝑛−1}, which implies that ‖𝑇𝑤 �̂�(𝑠)‖∞ =
max𝑖=1,...,𝑛−1‖𝑇𝑤𝑖�̂�𝑖(𝑠)‖∞. Hence system (A.7) is asymptotically
stablewith ‖𝑇𝑤 �̂�(𝑠)‖∞ < 𝛾, if its 𝑛−1 diagonal subsystems (13)

are simultaneously asymptotically stable with ‖𝑇𝑤𝑖�̂�𝑖(𝑠)‖∞ < 𝛾
for 𝑖 = 1, 2, . . . , 𝑛 − 1.

In conclusion, assume that the interaction graph G is
connected; the closed-loop system (12) can reach consensus
with the desired 𝐻∞ disturbance attenuation index 𝛾, if the𝑛 − 1 systems (13) are simultaneously asymptotically stable
with ‖𝑇𝑤𝑖�̂�𝑖(𝑠)‖∞ < 𝛾 for 𝑖 = 1, 2, . . . , 𝑛 − 1. This completes the
proof.

Proof of Lemma 7. Let us define a Lyapunov-Krasovskii
function for the multiagent system (14) as 𝑉(𝑥(𝑡), 𝑡) =∑7𝑖=1 𝑉𝑖(𝑡) with positive definite matrices 𝑃, 𝑄1, 𝑄2, 𝑅1, 𝑅2,𝑆1, and 𝑆2, where

𝑉1 (𝑡) = 𝑥𝑇 (𝑡) 𝑃𝑥 (𝑡) ,
𝑉2 (𝑡) = ∫𝑡

𝑡−𝑑1(𝑡)
𝑥𝑇 (𝑠) 𝑄1𝑥 (𝑠) 𝑑𝑠,

𝑉3 (𝑡) = ∫𝑡
𝑡−𝜏1

𝑥𝑇 (𝑠) 𝑅1𝑥 (𝑠) 𝑑𝑠,
𝑉4 (𝑡) = ∫0

−𝜏1

∫𝑡
𝑡+𝛽

�̇�𝑇 (𝑠) 𝑆1�̇� (𝑠) 𝑑𝑠 𝑑𝛽,
𝑉5 (𝑡) = ∫𝑡

𝑡−𝑑2(𝑡)
𝑥𝑇 (𝑠) 𝑄2𝑥 (𝑠) 𝑑𝑠,

𝑉6 (𝑡) = ∫𝑡
𝑡−𝜏2

𝑥𝑇 (𝑠) 𝑅2𝑥 (𝑠) 𝑑𝑠,
𝑉7 (𝑡) = ∫0

−𝜏2

∫𝑡
𝑡+𝛽

�̇�𝑇 (𝑠) 𝑆2�̇� (𝑠) 𝑑𝑠 𝑑𝛽.

(A.8)

The time derivative of 𝑉(𝑥(𝑡), 𝑡) along the solution of
system (14) is �̇�(𝑥(𝑡), 𝑡) = ∑7𝑖=1 �̇�𝑖(𝑡), where �̇�𝑖(𝑡) is as follows:
�̇�1 (𝑡) = 2𝑥𝑇 (𝑡) 𝑃 (𝐴𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − 𝑑 (𝑡))

+ 𝐴ℎ𝑥 (𝑡 − ℎ (𝑡)) + 𝐵𝑤𝑤 (𝑡)) , (A.9)

�̇�2 (𝑡) = 𝑥𝑇 (𝑡) 𝑄1𝑥 (𝑡) + ( ̇𝑑 (𝑡) − 1) 𝑥𝑇 (𝑡 − 𝑑 (𝑡))
⋅ 𝑄1𝑥 (𝑡 − 𝑑 (𝑡)) ⩽ 𝑥𝑇 (𝑡) 𝑄1𝑥 (𝑡) + (𝜇1 − 1) 𝑥𝑇 (𝑡
− 𝑑 (𝑡)) 𝑄1𝑥 (𝑡 − 𝑑 (𝑡)) ,

(A.10)

�̇�3 (𝑡) = 𝑥𝑇 (𝑡) 𝑅1𝑥 (𝑡) − 𝑥𝑇 (𝑡 − 𝜏1) 𝑅1𝑥 (𝑡 − 𝜏1) , (A.11)

�̇�4 (𝑡) = 𝜏1 (𝐴𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − 𝑑 (𝑡))
+ 𝐴ℎ𝑥 (𝑡 − ℎ (𝑡)) + 𝐵𝑤𝑤 (𝑡))𝑇 𝑆1 (𝐴𝑥 (𝑡)
+ 𝐴𝑑𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐴ℎ𝑥 (𝑡 − ℎ (𝑡)) + 𝐵𝑤𝑤 (𝑡))
− ∫𝑡
𝑡−𝜏1

�̇�𝑇 (𝑠) 𝑆1�̇� (𝑠) 𝑑𝑠 = 𝜏1 (𝐴𝑥 (𝑡)
+ 𝐴𝑑𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐴ℎ𝑥 (𝑡 − ℎ (𝑡)) + 𝐵𝑤𝑤 (𝑡))𝑇
⋅ 𝑆1 (𝐴𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐴ℎ𝑥 (𝑡 − ℎ (𝑡))
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+ 𝐵𝑤𝑤 (𝑡)) − ∫𝑡−𝑑(𝑡)
𝑡−𝜏1

�̇�𝑇 (𝑠) 𝑆1�̇� (𝑠) 𝑑𝑠
− ∫𝑡
𝑡−𝑑(𝑡)

�̇�𝑇 (𝑠) 𝑆1�̇� (𝑠) 𝑑𝑠,
(A.12)

and similarly,

�̇�5 (𝑡) ⩽ 𝑥𝑇 (𝑡) 𝑄2𝑥 (𝑡) + (𝜇2 − 1) 𝑥𝑇 (𝑡 − ℎ (𝑡))
⋅ 𝑄2𝑥 (𝑡 − ℎ (𝑡)) , (A.13)

�̇�6 (𝑡) = 𝑥𝑇 (𝑡) 𝑅2𝑥 (𝑡) − 𝑥𝑇 (𝑡 − 𝜏2) 𝑅2𝑥 (𝑡 − 𝜏2) , (A.14)

�̇�7 (𝑡) = 𝜏2 (𝐴𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − 𝑑 (𝑡))
+ 𝐴ℎ𝑥 (𝑡 − ℎ (𝑡)) + 𝐵𝑤𝑤 (𝑡))𝑇 𝑆2 (𝐴𝑥 (𝑡)
+ 𝐴𝑑𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐴ℎ𝑥 (𝑡 − ℎ (𝑡)) + 𝐵𝑤𝑤 (𝑡))
− ∫𝑡−ℎ(𝑡)
𝑡−𝜏2

�̇�𝑇 (𝑠) 𝑆2�̇� (𝑠) 𝑑𝑠
− ∫𝑡
𝑡−ℎ(𝑡)

�̇�𝑇 (𝑠) 𝑆2�̇� (𝑠) 𝑑𝑠.

(A.15)

For any matrices 𝑀1, 𝑀2, 𝑁1, and 𝑁2 with appropri-
ate dimensions, using Newton-Leibnitz formula with free-
weighting matrices, we can construct the following null
equations:

2 (𝑥𝑇 (𝑡)𝑀1 + 𝑥𝑇 (𝑡 − 𝑑 (𝑡))𝑀2)
⋅ (𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − 𝜏1) − ∫𝑡−𝑑(𝑡)

𝑡−𝜏1

�̇� (𝑠) 𝑑𝑠)
= 0,

2 (𝑥𝑇 (𝑡)𝑁1 + 𝑥𝑇 (𝑡 − 𝑑 (𝑡))𝑁2)
⋅ (𝑥 (𝑡) − 𝑥 (𝑡 − 𝑑 (𝑡)) − ∫𝑡

𝑡−𝑑(𝑡)
�̇� (𝑠) 𝑑𝑠) = 0.

(A.16)

According to square inequality

±2𝑥𝑇𝑦 ⩽ 𝑥𝑇Υ−1𝑥 + 𝑦𝑇Υ𝑦 (A.17)

for any 𝑥, 𝑦 ∈ R𝑛 and any positive definite matrix Υ ∈ R𝑛×𝑛,
it is easy to construct the following inequality:

− 2 (𝑥𝑇 (𝑡)𝑀1 + 𝑥𝑇 (𝑡 − 𝑑 (𝑡))𝑀2)∫𝑡−𝑑(𝑡)
𝑡−𝜏1

�̇� (𝑠) 𝑑𝑠
⩽ 𝜏1 (𝑥𝑇 (𝑡)𝑀1 + 𝑥𝑇 (𝑡 − 𝑑 (𝑡))𝑀2)
⋅ 𝑆−11 (𝑥𝑇 (𝑡)𝑀1 + 𝑥𝑇 (𝑡 − 𝑑 (𝑡))𝑀2)𝑇

+ 𝜏−11 (∫𝑡−𝑑(𝑡)
𝑡−𝜏1

�̇� (𝑠) 𝑑𝑠)𝑇 𝑆1 (∫𝑡−𝑑(𝑡)
𝑡−𝜏1

�̇� (𝑠) 𝑑𝑠) .

(A.18)

From Jensen integral inequality and 0 < 𝑑(𝑡) ⩽ 𝜏1, we have
(∫𝑡−𝑑(𝑡)
𝑡−𝜏1

�̇� (𝑠) 𝑑𝑠)𝑇 𝑆1 (∫𝑡−𝑑(𝑡)
𝑡−𝜏1

�̇� (𝑠) 𝑑𝑠)
⩽ 𝜏1 ∫𝑡−𝑑(𝑡)

𝑡−𝜏1

�̇�𝑇 (𝑠) 𝑆1�̇� (𝑠) 𝑑𝑠.
(A.19)

Therefore, from inequalities (A.18) and (A.19), we have

− 2 (𝑥𝑇 (𝑡)𝑀1 + 𝑥𝑇 (𝑡 − 𝑑 (𝑡))𝑀2) ∫𝑡−𝑑(𝑡)
𝑡−𝜏1

�̇� (𝑠) 𝑑𝑠
⩽ 𝜏1𝑥𝑇 (𝑡)𝑀1𝑆−11 𝑀𝑇1 𝑥 (𝑡)
+ 𝜏1𝑥𝑇 (𝑡)𝑀1𝑆−11 𝑀𝑇2 𝑥 (𝑡 − 𝑑 (𝑡))
+ 𝜏1𝑥𝑇 (𝑡 − 𝑑 (𝑡))𝑀2𝑆−11 𝑀𝑇1 𝑥 (𝑡)
+ 𝜏1𝑥𝑇 (𝑡 − 𝑑 (𝑡))𝑀2𝑆−11 𝑀𝑇2 𝑥 (𝑡 − 𝑑 (𝑡))
+ ∫𝑡−𝑑(𝑡)
𝑡−𝜏1

�̇�𝑇 (𝑠) 𝑆1�̇� (𝑠) 𝑑𝑠,

(A.20)

and similarly,

− 2 (𝑥𝑇 (𝑡)𝑁1 + 𝑥𝑇 (𝑡 − 𝑑 (𝑡))𝑁2)∫𝑡
𝑡−𝑑(𝑡)

�̇� (𝑠) 𝑑𝑠
⩽ 𝜏1𝑥𝑇 (𝑡)𝑁1𝑆−11 𝑁𝑇1 𝑥 (𝑡)
+ 𝜏1𝑥𝑇 (𝑡)𝑁1𝑆−11 𝑁𝑇2 𝑥 (𝑡 − 𝑑 (𝑡))
+ 𝜏1𝑥𝑇 (𝑡 − 𝑑 (𝑡))𝑁2𝑆−11 𝑁𝑇1 𝑥 (𝑡)
+ 𝜏1𝑥𝑇 (𝑡 − 𝑑 (𝑡))𝑁2𝑆−11 𝑁𝑇2 𝑥 (𝑡 − 𝑑 (𝑡))
+ ∫𝑡
𝑡−𝑑(𝑡)

�̇�𝑇 (𝑠) 𝑆1�̇� (𝑠) 𝑑𝑠,

(A.21)

Then adding the null equations (A.16) to the right-hand
side of (A.12) and replacing the corresponding terms with
inequalities (A.20) and (A.21), we can obtain

�̇�4 (𝑡) ⩽ 𝜏1 (𝐴𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − 𝑑 (𝑡))
+ 𝐴ℎ𝑥 (𝑡 − ℎ (𝑡)) + 𝐵𝑤𝑤 (𝑡))𝑇 𝑆1 (𝐴𝑥 (𝑡)
+ 𝐴𝑑𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐴ℎ𝑥 (𝑡 − ℎ (𝑡)) + 𝐵𝑤𝑤 (𝑡))
+ 2𝑥𝑇 (𝑡)𝑀1𝑥 (𝑡 − 𝑑 (𝑡)) − 2𝑥𝑇 (𝑡)𝑀1𝑥 (𝑡 − 𝜏1)
+ 2𝑥𝑇 (𝑡 − d (𝑡))𝑀2𝑥 (𝑡 − 𝑑 (𝑡)) − 2𝑥𝑇 (𝑡 − 𝑑 (𝑡))
⋅ 𝑀2𝑥 (𝑡 − 𝜏1) + 𝜏1𝑥𝑇 (𝑡)𝑀1𝑆−11 𝑀𝑇1 𝑥 (𝑡)
+ 𝜏1𝑥𝑇 (𝑡)𝑀1𝑆−11 𝑀𝑇2 𝑥 (𝑡 − 𝑑 (𝑡)) + 𝜏1𝑥𝑇 (𝑡
− 𝑑 (𝑡))𝑀2𝑆−11 𝑀𝑇1 𝑥 (𝑡) + 𝜏1𝑥𝑇 (𝑡 − 𝑑 (𝑡))
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⋅ 𝑀2𝑆−11 𝑀𝑇2 𝑥 (𝑡 − 𝑑 (𝑡)) + 2𝑥𝑇 (𝑡)𝑁1𝑥 (𝑡)
− 2𝑥𝑇 (𝑡)𝑁1𝑥 (𝑡 − 𝑑 (𝑡)) + 2𝑥𝑇 (𝑡 − 𝑑 (𝑡))𝑁2𝑥 (𝑡)
− 2𝑥𝑇 (𝑡 − 𝑑 (𝑡))𝑁2𝑥 (𝑡 − 𝑑 (𝑡)) + 𝜏1𝑥𝑇 (𝑡)
⋅ 𝑁1𝑆−11 𝑁𝑇1 𝑥 (𝑡) + 𝜏1𝑥𝑇 (𝑡)𝑁1𝑆−11 𝑁𝑇2 𝑥 (𝑡 − 𝑑 (𝑡))
+ 𝜏1𝑥𝑇 (𝑡 − 𝑑 (𝑡))𝑁2𝑆−11 𝑁𝑇1 𝑥 (𝑡) + 𝜏1𝑥𝑇 (𝑡
− 𝑑 (𝑡))𝑁2𝑆−11 𝑁𝑇2 𝑥 (𝑡 − 𝑑 (𝑡)) .

(A.22)

For any matrices 𝑈1, 𝑈2, 𝑉1, and 𝑉2 with appropriate
dimensions, by using the method similar to �̇�4(𝑡), we can
obtain

�̇�7 (𝑡) ⩽ 𝜏2 (𝐴𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − 𝑑 (𝑡))
+ 𝐴ℎ𝑥 (𝑡 − ℎ (𝑡)) + 𝐵𝑤𝑤 (𝑡))𝑇 𝑆2 (𝐴𝑥 (𝑡)
+ 𝐴𝑑𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐴ℎ𝑥 (𝑡 − ℎ (𝑡)) + 𝐵𝑤𝑤 (𝑡))
+ 2𝑥𝑇 (𝑡) 𝑈1𝑥 (𝑡 − ℎ (𝑡)) − 2𝑥𝑇 (𝑡) 𝑈1𝑥 (𝑡 − 𝜏2)
+ 2𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑈2𝑥 (𝑡 − ℎ (𝑡)) − 2𝑥𝑇 (𝑡 − ℎ (𝑡))
⋅ 𝑈2𝑥 (𝑡 − 𝜏2) + 𝜏2𝑥𝑇 (𝑡) 𝑈1𝑆−12 𝑈𝑇1 𝑥 (𝑡)
+ 𝜏2𝑥𝑇 (𝑡) 𝑈1𝑆−12 𝑈𝑇2 𝑥 (𝑡 − ℎ (𝑡)) + 𝜏2𝑥𝑇 (𝑡 − ℎ (𝑡))
⋅ 𝑈2𝑆−12 𝑈𝑇1 𝑥 (𝑡) + 𝜏2𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑈2𝑆−12 𝑈𝑇2 𝑥 (𝑡
− ℎ (𝑡)) + 2𝑥𝑇 (𝑡) 𝑉1𝑥 (𝑡) − 2𝑥𝑇 (𝑡) 𝑉1𝑥 (𝑡 − ℎ (𝑡))
+ 2𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑉2𝑥 (𝑡) − 2𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑉2𝑥 (𝑡
− ℎ (𝑡)) + 𝜏2𝑥𝑇 (𝑡) 𝑉1𝑆−12 𝑉𝑇1 𝑥 (𝑡) + 𝜏2𝑥𝑇 (𝑡)
⋅ 𝑉1𝑆−12 𝑉𝑇2 𝑥 (𝑡 − ℎ (𝑡)) + 𝜏2𝑥𝑇 (𝑡 − ℎ (𝑡))
⋅ 𝑉2𝑆−12 𝑉𝑇1 𝑥 (𝑡) + 𝜏2𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑉2𝑆−12 𝑉𝑇2 𝑥 (𝑡
− ℎ (𝑡)) .

(A.23)

As a result, let us define an extended state vector as 𝜒(𝑡) ≜[𝑥𝑇(𝑡), 𝑥𝑇(𝑡−𝑑(𝑡)), 𝑥𝑇(𝑡−ℎ(𝑡)), 𝑥𝑇(𝑡−𝜏1), 𝑥𝑇(𝑡−𝜏2), 𝑤𝑇(𝑡)]𝑇
and substitute �̇�𝑖(𝑡) (𝑖 = 1, . . . , 7) computed in (A.9), (A.10),
(A.11), (A.22),(A.13), (A.14), and (A.23) into �̇�(𝑥(𝑡), 𝑡) =∑7𝑖=1 �̇�𝑖(𝑡). Then, we can calculate

�̇� (𝑥 (𝑡) , 𝑡) + 𝑧𝑇 (𝑡) 𝑧 (𝑡) − 𝛾2𝑤𝑇 (𝑡) 𝑤 (𝑡)
⩽ 𝜒𝑇 (𝑡) Ψ𝜒 (𝑡) , (A.24)

where

Ψ

=

[[[[[[[[[[[[[
[

Ψ11 Ψ12 Ψ13 −𝑀1 𝑈1 𝑃𝐵𝑤 + 𝐴𝑇 (𝜏1𝑆1 + 𝜏2𝑆2) 𝐵𝑤
∗ Ψ22 Ψ23 −𝑀2 0 𝐴𝑇𝑑 (𝜏1𝑆1 + 𝜏2𝑆2) 𝐵𝑤
∗ ∗ Ψ33 0 𝑈2 𝐴𝑇ℎ (𝜏1𝑆1 + 𝜏2𝑆2) 𝐵𝑤
∗ ∗ ∗ −𝑅1 0 0
∗ ∗ ∗ ∗ −𝑅2 0
∗ ∗ ∗ ∗ ∗ −𝛾2𝐼 + 𝐵𝑇𝑤 (𝜏1𝑆1 + 𝜏2𝑆2) 𝐵𝑤

]]]]]]]]]]]]]
]

(A.25)

with

Ψ11 = Γ11 + 𝜏1𝑀1𝑆−11 𝑀𝑇1 + 𝜏2𝑈1𝑆−12 𝑈𝑇1
+ 𝜏1𝑁1𝑆−11 𝑁𝑇1 + 𝜏2𝑉1𝑆−12 𝑉𝑇1 ,

Ψ12 = Γ12 + 𝐴𝑇 (𝜏1𝑆1 + 𝜏2𝑆2) 𝐴𝑑 + 𝜏1𝑀1𝑆−11 𝑀𝑇2
+ 𝜏1𝑁1𝑆−11 𝑁𝑇2 ,

Ψ13 = Γ12 + 𝐴𝑇 (𝜏1𝑆1 + 𝜏2𝑆2) 𝐴ℎ + 𝜏2𝑈1𝑆−12 𝑈𝑇2
+ 𝜏2𝑉1𝑆−12 𝑉𝑇2 ,

Ψ22 = Γ22 + 𝐴𝑇𝑑 (𝜏1𝑆1 + 𝜏2𝑆2) 𝐴𝑑 + 𝜏1𝑀2𝑆−11 𝑀𝑇2
+ 𝜏1𝑁2𝑆−11 𝑁𝑇2 ,

Ψ23 = 𝐴𝑇𝑑 (𝜏1𝑆1 + 𝜏2𝑆2) 𝐴ℎ,
Ψ33 = Γ33 + 𝐴𝑇ℎ (𝜏1𝑆1 + 𝜏2𝑆2) 𝐴ℎ𝜏2𝑈2𝑆−12 𝑈𝑇2

+ 𝜏2𝑉2𝑆−12 𝑉𝑇2 .

(A.26)

If Ψ < 0 is satisfied, then �̇�(𝑥(𝑡), 𝑡) + 𝑧𝑇(𝑡)𝑧(𝑡) −𝛾2𝑤𝑇(𝑡)𝑤(𝑡) ≤ 𝜒𝑇(𝑡)Ψ𝜒(𝑡) < 0. It is apparently seen
that when 𝑤(𝑡) ≡ 0, ∀𝑡 ⩾ 0, �̇�(𝑥(𝑡), 𝑡) < 0 is ensured
guaranteeing that system (14) without the disturbances is
globally asymptotically stable. Moreover, integrating both
sides of �̇�(𝑥(𝑡), 𝑡) + 𝑧𝑇(𝑡)𝑧(𝑡) − 𝛾2𝑤𝑇(𝑡)𝑤(𝑡) < 0 from 0
to infinity allows getting lim𝑡→+∞𝑉(𝑥(𝑡), 𝑡) − 𝑉(𝑥(0), 0) +∫∞
0
[𝑧𝑇(𝑡)𝑧(𝑡) − 𝛾2𝑤𝑇(𝑡)𝑤(𝑡)] < 0. Since lim𝑡→+∞𝑉(𝑥(𝑡), 𝑡) >0 and𝑉(𝑥(0), 0) = 0, we have ∫∞

0
[𝑧𝑇(𝑡)𝑧(𝑡) − 𝛾2𝑤𝑇(𝑡)𝑤(𝑡)] <0. Finally, applying Lemma 5 (Schur complement formula) toΨ we can get (15). This completes the proof.

Proof of Theorem 8. On the basis of Lemma 7, subsystem (13)
is asymptotically stable with ‖𝑇𝑤𝑖�̂�𝑖(𝑠)‖∞ < 𝛾, if there exist
positive definite matrices 𝑃, 𝑄1, 𝑄2, 𝑅1, 𝑅2, 𝑆1, and 𝑆2 and
matrices𝑀1,𝑀2,𝑁1,𝑁2,𝑈1,𝑈2,𝑉1, and𝑉2 with appropriate
dimensions such that
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Γ(𝑖) =

[[[[[[[[[[[[[
[

Γ(𝑖)0 Γ(𝑖)1 Γ(𝑖)2 Γ(𝑖)3 Γ(𝑖)4 Γ(𝑖)5
∗ −𝑆 0 0 0 0
∗ ∗ −𝜏1𝑆1 0 0 0
∗ ∗ ∗ −𝜏1𝑆1 0 0
∗ ∗ ∗ ∗ −𝜏2𝑆2 0
∗ ∗ ∗ ∗ ∗ −𝜏2𝑆2

]]]]]]]]]]]]]
]

< 0,

(A.27)

where 𝑆 = 𝜏1𝑆1 + 𝜏2𝑆2, 𝐴1 = 𝐴 + Δ𝐴(𝑡), 𝐴2 = 𝐴𝑑 + Δ𝐴𝑑(𝑡),𝐵𝑘𝑖 = −𝜆𝑖𝐵1𝐾,

Γ(𝑖)0 =

[[[[[[[[[[[[[[
[

Γ(𝑖)11 Γ(𝑖)12 Γ(𝑖)13 −𝑀1 −𝑈1 𝑃𝐵2
∗ Γ(𝑖)22 0 −𝑀2 0 0
∗ ∗ Γ(𝑖)33 0 −𝑈2 0
∗ ∗ ∗ −𝑅1 0 0
∗ ∗ ∗ ∗ −𝑅2 0
∗ ∗ ∗ ∗ ∗ 𝛾2𝐼

]]]]]]]]]]]]]]
]

,

Γ(𝑖)1 = [𝑆𝐴1, 𝑆𝐴2, 𝑆𝐵𝑘𝑖, 0, 0, 𝑆𝐵2]𝑇 ,
Γ(𝑖)2 = [𝜏1𝑀𝑇1 , 𝜏1𝑀𝑇2 , 0, 0, 0, 0]𝑇 ,
Γ(𝑖)3 = [𝜏1𝑁𝑇1 , 𝜏1𝑁𝑇2 , 0, 0, 0, 0]𝑇 ,
Γ(𝑖)4 = [𝜏2𝑈𝑇1 , 0, 𝜏2𝑈𝑇2 , 0, 0, 0]𝑇 ,
Γ(𝑖)5 = [𝜏2𝑉𝑇1 , 0, 𝜏2𝑉𝑇2 , 0, 0, 0]𝑇 ,
Γ(𝑖)11 = 𝑃𝐴1 + 𝐴𝑇1𝑃 + 𝑄1 + 𝑄2 + 𝑅1 + 𝑅2 + 𝑁1 + 𝑁𝑇1

+ 𝑉1 + 𝑉𝑇1 + 𝐼,
Γ(𝑖)12 = 𝑃𝐴2 +𝑀1 − 𝑁1 + 𝑁𝑇2 ,
Γ(𝑖)13 = 𝑃𝐵𝑘𝑖 + 𝑈1 − 𝑉1 + 𝑉𝑇2 ,
Γ(𝑖)22 = (𝜇1 − 1)𝑄1 +𝑀2 +𝑀𝑇2 − 𝑁2 − 𝑁𝑇2 ,
Γ(𝑖)33 = (𝜇2 − 1)𝑄2 + 𝑈2 + 𝑈𝑇2 − 𝑉2 − 𝑉𝑇2 .

(A.28)

Due to the convex property of LMIs, Γ(𝑖) < 0 for all 𝑖 =1, 2, . . . , 𝑛 − 1, if and only if Γ(1) < 0 and Γ(𝑛−1) < 0, which
are associated with the smallest eigenvalues 𝜆1 and the largest
eigenvalues 𝜆𝑛−1, respectively.

Pre- and postmultiplying inequality (A.27) with
diag{𝑃−1, 𝑃−1, 𝑃−1, 𝑃−1, 𝐼, 𝑃−1, 𝑃−1, 𝑃−1, 𝑃−1, 𝑃−1} and apply-
ing the variable changes 𝑋 = 𝑃−1, ∗̂ = 𝑃−1 ∗ 𝑃−1, where∗ denote 𝑄1, 𝑄2, 𝑅1, 𝑅2, 𝑆1, 𝑆2, 𝑀1, 𝑀2, 𝑁1, 𝑁2, 𝑈1,

𝑈2, 𝑉1, and 𝑉2, inequality (A.27) can be decomposed asΓ̂(𝑖) = Γ̂(𝑖)𝑥 + Γ̂(𝑖)𝑥𝑥 + Γ̂(𝑖)𝑇𝑥𝑥 , where

Γ̂(𝑖)𝑥 =
[[[[[[[[[[[[
[

Γ̂(𝑖)0 0 Γ̂(𝑖)2 Γ̂(𝑖)3 Γ̂(𝑖)4 Γ̂(𝑖)5
∗ −𝑆 0 0 0 0
∗ ∗ −𝜏1𝑆1 0 0 0
∗ ∗ ∗ −𝜏1𝑆1 0 0
∗ ∗ ∗ ∗ −𝜏2𝑆2 0
∗ ∗ ∗ ∗ ∗ −𝜏2𝑆2

]]]]]]]]]]]]
]

,

Γ̂(𝑖)𝑥𝑥 =
[[[[[[[[[[[
[

0 Γ̂(𝑖)1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

]]]]]]]]]]]
]

,

𝑆 = 𝜏1𝑆1 + 𝜏2𝑆2,

Γ̂(𝑖)0 =
[[[[[[[[[[[[
[

Γ̂(𝑖)11 Γ̂(𝑖)12 Γ̂(𝑖)13 −�̂�1 −�̂�1 𝐵2
∗ Γ̂(𝑖)22 0 −�̂�2 0 0
∗ ∗ Γ̂(𝑖)33 0 −�̂�2 0
∗ ∗ ∗ −�̂�1 0 0
∗ ∗ ∗ ∗ −�̂�2 0
∗ ∗ ∗ ∗ ∗ −𝛾2𝐼

]]]]]]]]]]]]
]

,

Γ̂(𝑖)1 =
[[[[[[[[[[[[
[

𝑋𝐴𝑇1𝑋−1𝑆
𝑋𝐴𝑇2𝑋−1𝑆
𝑋𝐵𝑇𝑘𝑖𝑋−1𝑆0

0
𝐵𝑇2𝑋−1𝑆

]]]]]]]]]]]]
]

,

Γ̂(𝑖)2 = [𝜏1�̂�𝑇1 , 𝜏1�̂�𝑇2 , 0, 0, 0, 0]𝑇 ,
Γ̂(𝑖)3 = [𝜏1�̂�𝑇1 , 𝜏1�̂�𝑇2 0, 0, 0, 0]𝑇 ,
Γ̂(𝑖)4 = [𝜏2�̂�𝑇1 , 0, 𝜏2�̂�𝑇2 , 0, 0, 0]𝑇 ,
Γ̂(𝑖)5 = [𝜏2�̂�𝑇1 , 0, 𝜏2�̂�𝑇2 , 0, 0, 0]𝑇 ,
Γ̂(𝑖)11 = 𝐴1𝑋 + 𝑋𝐴𝑇1 + 𝑄1 + 𝑄2 + �̂�1 + �̂�2 + �̂�1

+ �̂�𝑇1 + �̂�1 + �̂�𝑇1 + 𝑋𝑋,
Γ̂(𝑖)12 = 𝐴2𝑋 + �̂�1 − �̂�1 + �̂�𝑇2 ,
Γ̂(𝑖)13 = 𝐵𝑘𝑖𝑋 + �̂�1 − �̂�1 + �̂�𝑇2 ,
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Γ̂(𝑖)22 = (𝜇1 − 1)𝑄1 + �̂�2 + �̂�𝑇2 − �̂�2 − �̂�𝑇2 ,
Γ̂(𝑖)33 = (𝜇2 − 1)𝑄2 + �̂�2 + �̂�𝑇2 − �̂�2 − �̂�𝑇2 .

(A.29)

On one hand, Γ̂(𝑖)𝑥𝑥 can be rewritten as Γ̂(𝑖)𝑥𝑥 = Π̂(𝑖)𝑇1 𝑋−1Π̂2,
where

Π̂(𝑖)1 = [𝐴1𝑋,𝐴2𝑋, 𝐵𝑘𝑖𝑋, 0, 0, 𝐵2, 0, 0, 0, 0, 0] ,
Π̂2 = [0, 0, 0, 0, 0, 0, 𝑆, 0, 0, 0, 0] . (A.30)

On the other hand, according to square inequality, it is easy
to construct the following inequality:

Π̂(𝑖)𝑇1 𝑋−1Π̂2 + (Π̂(𝑖)𝑇1 𝑋−1Π̂2)𝑇
⩽ Π̂(𝑖)𝑇1 𝑇−1Π̂(𝑖)1 + Π̂𝑇2𝑋−1𝑇𝑋−1Π̂2,

(A.31)

where 𝑇 is any positive definite matrix with appropriate
dimensions.Therefore, Γ̂(𝑖)𝑥 +Π̂(𝑖)𝑇1 𝑇−1Π̂(𝑖)1 +Π̂𝑇2𝑋−1𝑇𝑋−1Π̂2 <0 implies that Γ̂(𝑖) < 0. Then, defining 𝑌 = 𝐾𝑋 and applying
Lemma 5 (Schur complement formula) on Γ̂(𝑖)𝑥 +Π̂(𝑖)𝑇1 𝑇−1Π̂(𝑖)1 +Π̂𝑇2𝑋−1𝑇𝑋−1Π̂2 < 0, we can obtain the matrix inequality
condition:

Φ(𝑖) = [[[
[
Φ(𝑖)0 Π(𝑖)𝑇1 Π𝑇2∗ −𝑇 0
∗ ∗ −𝑋𝑇−1𝑋

]]]
]
< 0, (A.32)

where

Φ(𝑖)0

=

[[[[[[[[[[[[[[[
[

Φ(𝑖)0𝑥 0 Γ̂(𝑖)2 Γ̂(𝑖)3 Γ̂(𝑖)4 Γ̂(𝑖)5 Φ6
∗ −𝑆 0 0 0 0 0
∗ ∗ −𝜏1𝑆1 0 0 0 0
∗ ∗ ∗ −𝜏1𝑆1 0 0 0
∗ ∗ ∗ ∗ −𝜏2𝑆2 0 0
∗ ∗ ∗ ∗ ∗ −𝜏2𝑆2 0
∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]]]]]]]]]]]]]]]
]

,

Φ(𝑖)0𝑥 =
[[[[[[[[[[[[
[

Φ11 Φ12 Φ(𝑖)13 −�̂�1 −�̂�1 𝐵2
∗ Φ22 0 −�̂�2 0 0
∗ ∗ Φ33 0 −�̂�2 0
∗ ∗ ∗ −R̂1 0 0
∗ ∗ ∗ ∗ −�̂�2 0
∗ ∗ ∗ ∗ ∗ −𝛾2𝐼

]]]]]]]]]]]]
]

,

Φ11
= 𝐴1𝑋 + 𝑋𝐴𝑇1 + 𝑄1 + 𝑄2 + �̂�1 + �̂�2 + �̂�1 + �̂�𝑇1
+ �̂�1 + �̂�𝑇1 ,

Φ12 = 𝐴2𝑋 + �̂�1 − �̂�1 + �̂�𝑇2 ,
Φ(𝑖)13 = −𝜆𝑖𝐵1𝑌 + �̂�1 − �̂�1 + �̂�𝑇2 ,
Φ22 = (𝜇1 − 1)𝑄1 + �̂�2 + �̂�𝑇2 − �̂�2 − �̂�𝑇2 ,
Φ33 = (𝜇2 − 1)𝑄2 + �̂�2 + �̂�𝑇2 − �̂�2 − �̂�𝑇2 ,
Φ6 = [𝑋, 0, 0, 0, 0, 0]𝑇 ,
Π(𝑖)1 = [𝐴1𝑋,𝐴2𝑋, −𝜆𝑖𝐵1𝑌, 0, 0, 𝐵2, 0, 0, 0, 0, 0, 0] ,
Π2 = [0, 0, 0, 0, 0, 0, 𝑆, 0, 0, 0, 0, 0] .

(A.33)

Note that 𝐴1 = 𝐴 + Δ𝐴(𝑡) = 𝐴 + 𝐺𝐹(𝑡)𝐸 and 𝐴2 = 𝐴𝑑 +Δ𝐴𝑑(𝑡) = 𝐴𝑑 + 𝐺𝑑𝐹(𝑡)𝐸𝑑. Define that
𝐽 = [𝐺𝑇, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 𝐺𝑇, 0]𝑇 ,
�̂� = [𝐸𝑋, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ,
𝐽𝑑 = [𝐺𝑇𝑑 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 𝐺𝑇𝑑 , 0]𝑇 ,
�̂�𝑑 = [0, 𝐸𝑑𝑋, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] .

(A.34)

It can be obtained that Φ(𝑖) = Φ̂(𝑖) + 𝐽𝐹(𝑡)�̂� + �̂�𝑇𝐹𝑇(𝑡)𝐽𝑇 +𝐽𝑑𝐹(𝑡)�̂�𝑑 + �̂�𝑇𝑑𝐹𝑇(𝑡)𝐽𝑇𝑑 , where Φ̂(𝑖) is constructed through
replacing𝐴1 and𝐴2 term inΦ(𝑖) with𝐴 and𝐴𝑑, respectively.
According to square inequality (A.17) and 𝐹𝑇(𝑡)𝐹(𝑡) ⩽ 𝐼,
there exist 𝜀1, 𝜀2 > 0 such that Φ̂(𝑖) + 𝜀1𝐽 𝐽𝑇 + 𝜀−11 �̂�𝑇�̂� +
𝜀2𝐽𝑑𝐽𝑇𝑑 + 𝜀−12 �̂�𝑇𝑑 �̂�𝑑 < 0 guaranteeingΦ(𝑖) < 0. Then, applying
Lemma 5 (Schur complement formula) on Φ̂(𝑖) + 𝜀1𝐽 𝐽𝑇 +𝜀−11 �̂�𝑇�̂� + 𝜀2𝐽𝑑𝐽𝑇𝑑 + 𝜀−12 �̂�𝑇𝑑 �̂�𝑑 < 0 and using the definitions𝑄1 ≜ 𝑄1, 𝑄2 ≜ 𝑄2, 𝑅1 ≜ �̂�1, 𝑅2 ≜ �̂�2, 𝑆1 ≜ 𝑆1, 𝑆2 ≜𝑆2, 𝑀1 ≜ �̂�1, 𝑀2 ≜ �̂�2, 𝑁1 ≜ �̂�1, 𝑁2 ≜ �̂�2, 𝑈1 ≜ �̂�1, 𝑈2 ≜�̂�2, 𝑉1 ≜ �̂�1, and 𝑉2 ≜ �̂�2, we can obtain that the matrix
inequality conditionΦ(𝑖) < 0 (see (17)) and 𝐾 = 𝑌𝑋−1.

On the basis of the above analysis, if Φ(1) < 0, Φ(𝑛−1) <0 and 𝐾 = 𝑌𝑋−1, the subsystems (13) are simultaneously
asymptotically stable with ‖𝑇𝑤𝑖�̂�𝑖(𝑠)‖∞ < 𝛾. Further, byTheo-
rem 6, the closed-loop system (12) reaches consensus with the
desired𝐻∞ disturbance attenuation index 𝛾; that is, applying
the distributed protocol (11) with 𝐾 = 𝑌𝑋−1, the multiagent
system (1) can reach consensus while satisfying the desired𝐻∞ disturbance attenuation index 𝛾. This completes the
proof.
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