12,942 research outputs found

    The Lifetime of FRIIs in Groups and Clusters: Implications for Radio-Mode Feedback

    Get PDF
    We determine the maximum lifetime t_max of 52 FRII radio sources found in 26 central group galaxies from cross correlation of the Berlind SDSS group catalog with the VLA FIRST survey. Mock catalogs of FRII sources were produced to match the selection criteria of FIRST and the redshift distribution of our parent sample, while an analytical model was used to calculate source sizes and luminosities. The maximum lifetime of FRII sources was then determined via a comparison of the observed and model projected length distributions. We estimate the average FRII lifetime is 1.5x10^7 years and the duty cycle is ~8x10^8 years. Degeneracies between t_max and the model parameters: jet power distribution, axial ratio, energy injection index, and ambient density introduce at most a factor of two uncertainty in our lifetime estimate. In addition, we calculate the radio active galactic nuclei (AGN) fraction in central group galaxies as a function of several group and host galaxy properties. The lifetime of radio sources recorded here is consistent with the quasar lifetime, even though these FRIIs have substantially sub-Eddington accretion. These results suggest a fiducial time frame for energy injection from AGN in feedback models. If the morphology of a given extended radio source is set by large-scale environment, while the lifetime is determined by the details of the accretion physics, this FRII lifetime is relevant for all extended radio sources.Comment: 18 pages, 7 figures. Accepted for publication in ApJ. High resolution paper available at http://www.astronomy.ohio-state.edu/~bird/BMK07.pd

    J1420--0545: The radio galaxy larger than 3C236

    Full text link
    We report the discovery of the largest giant radio galaxy, J1420-0545: a FR type II radio source with an angular size of 17.4' identified with an optical galaxy at z=0.3067. Thus, the projected linear size of the radio structure is 4.69 Mpc (if we assume that H_{0}=71 km\s\Mpc, Omega_{m}=0.27, and Omega_{\Lambda}=0.73). This makes it larger than 3C236, which is the largest double radio source known to date. New radio observations with the 100 m Effelsberg telescope and the Giant Metrewave Radio Telescope, as well as optical identification with a host galaxy and its optical spectroscopy with the William Herschel Telescope are reported. The spectrum of J1420-0545 is typical of elliptical galaxies in which continuum emission with the characteristic 4000A discontinuity and the H and K absorption lines are dominated by evolved stars. The dynamical age of the source, its jets' power, the energy density, and the equipartition magnetic field are calculated and compared with the corresponding parameters of other giant and normal-sized radio galaxies from a comparison sample. The source is characterized by the exceptionally low density of the surrounding IGM and an unexpectedly high expansion speed of the source along the jet axis. All of these may suggest a large inhomogeneity of the IGM.Comment: 20 pages, 5 figures, 3 table

    Nuclear energy density functional from chiral pion-nucleon dynamics: Isovector terms

    Full text link
    We extend a recent calculation of the nuclear energy density functional in the framework of chiral perturbation theory by computing the isovector surface and spin-orbit terms: (\vec \nabla \rho_p- \vec \nabla \rho_n)^2 G_d(\rho)+ (\vec \nabla \rho_p- \vec \nabla \rho_n)\cdot(\vec J_p-\vec J_n) G_{so(\rho)+(\vec J_p-\vec J_n)^2 G_J(\rho) pertaining to different proton and neutron densities. Our calculation treats systematically the effects from 1π1\pi-exchange, iterated 1π1\pi-exchange, and irreducible 2π2\pi-exchange with intermediate Δ\Delta-isobar excitations, including Pauli-blocking corrections up to three-loop order. Using an improved density-matrix expansion, we obtain results for the strength functions Gd(ρ)G_d(\rho), Gso(ρ)G_{so}(\rho) and GJ(ρ)G_J(\rho) which are considerably larger than those of phenomenological Skyrme forces. These (parameter-free) predictions for the strength of the isovector surface and spin-orbit terms as provided by the long-range pion-exchange dynamics in the nuclear medium should be examined in nuclear structure calculations at large neutron excess.Comment: 12 pages, 5 figure

    Quasars: What turns them off?

    Get PDF
    (Abridged) We explore the idea that the anti-hierarchical turn-off observed in the quasar population arises from self-regulating feedback, via an outflow mechanism. Using a detailed hydrodynamic simulation we calculate the luminosity function of quasars down to a redshift of z=1 in a large, cosmologically representative volume. Outflows are included explicitly by tracking halo mergers and driving shocks into the surrounding intergalactic medium. Our results are in excellent agreement with measurements of the spatial distribution of quasars, and we detect an intriguing excess of galaxy-quasar pairs at very short separations. We also reproduce the anti-hierarchical turnoff in the quasar luminosity function, however, the magnitude of the turn-off falls short of that observed as well as that predicted by analogous semi-analytic models. The difference can be traced to the treatment of gas heating within galaxies. The simulated galaxy cluster L_X-T relationship is close to that observed for z~1 clusters, but the simulated galaxy groups at z=1 are significantly perturbed by quasar outflows, suggesting that measurements of X-ray emission in high-redshift groups could well be a "smoking gun" for the AGN heating hypothesis.Comment: 16 pages, 11 figures, submitted to ApJ, comments welcome

    Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys

    Full text link
    We show that the measurement of the baryonic acoustic oscillations in large high redshift galaxy surveys offers a precision route to the measurement of dark energy. The cosmic microwave background provides the scale of the oscillations as a standard ruler that can be measured in the clustering of galaxies, thereby yielding the Hubble parameter and angular diameter distance as a function of redshift. This, in turn, enables one to probe dark energy. We use a Fisher matrix formalism to study the statistical errors for redshift surveys up to z=3 and report errors on cosmography while marginalizing over a large number of cosmological parameters including a time-dependent equation of state. With redshifts surveys combined with cosmic microwave background satellite data, we achieve errors of 0.037 on Omega_x, 0.10 on w(z=0.8), and 0.28 on dw(z)/dz for cosmological constant model. Models with less negative w(z) permit tighter constraints. We test and discuss the dependence of performance on redshift, survey conditions, and fiducial model. We find results that are competitive with the performance of future supernovae Ia surveys. We conclude that redshift surveys offer a promising independent route to the measurement of dark energy.Comment: submitted to ApJ, 24 pages, LaTe

    Chiral 3π\pi-exchange NN-potentials: Results for dominant next-to-leading order contributions

    Full text link
    We calculate in (two-loop) chiral perturbation theory the local NN-potentials generated by the three-pion exchange diagrams with one insertion from the second order chiral effective pion-nucleon Lagrangian proportional to the low-energy constants c1,2,3,4c_{1,2,3,4}. The resulting isoscalar central potential vanishes identically. In most cases these 3π3\pi-exchange potentials are larger than the ones generated by the diagrams involving only leading order vertices due to the large values of c3,4c_{3,4} (which mainly represent virtual Δ\Delta-excitation). A similar feature has been observed for the chiral 2π2\pi-exchange. We also give suitable (double-integral) representations for the spin-spin and tensor potentials generated by the leading-order diagrams proportional to gA6g_A^6 involving four nucleon propagators. In these cases the Cutkosky rule cannot be used to calculate the spectral-functions in the infinite nucleon mass limit since the corresponding mass-spectra start with a non-vanishing value at the 3π3\pi-threshold. Altogether, one finds that chiral 3π3\pi-exchange leads to small corrections in the region r1.4r\geq 1.4 fm where 1π1\pi- and chiral 2π2\pi-exchange alone provide a very good strong NN-force as shown in a recent analysis of the low-energy pp-scattering data-base.Comment: 11 pages, 7 figures, to be published in The Physical Review

    A multifrequency study of giant radio sources-II. Spectral ageing analysis of the lobes of selected sources

    Full text link
    Multifrequency observations with the GMRT and the VLA are used to determine the spectral breaks in consecutive strips along the lobes of a sample of selected giant radio sources (GRSs) in order to estimate their spectral ages. The maximum spectral ages estimated for the detected radio emission in the lobes of our sources range from \sim6 to 36 Myr with a median value of \sim20 Myr using the classical equipartition fields. Using the magnetic field estimates from the Beck & Krause formalism the spectral ages range from \sim5 to 38 Myr with a median value of \sim22 Myr. These ages are significantly older than smaller sources. In all but one source (J1313+6937) the spectral age gradually increases with distance from the hotspot regions, confirming that acceleration of the particles mainly occurs in the hotspots. Most of the GRSs do not exhibit zero spectral ages in the hotspots, as is the case in earlier studies of smaller sources. This is likely to be largely due to contamination by more extended emission due to relatively modest resolutions. The injection spectral indices range from \sim0.55 to 0.88 with a median value of \sim0.6. We discuss these values in the light of theoretical expectations, and show that the injection spectral index appears to be correlated with luminosity and/or redshift as well as with linear size.Comment: 12 Pages, 13 Figures, 9 Tables, Accepted for publication in MNRA

    Spatially resolved spectra of 3C galaxy nuclei

    Get PDF
    We present and discuss visible-wavelength long-slit spectra of four low redshift 3C galaxies obtained with the STIS instrument on the Hubble Space Telescope. The slit was aligned with near-nuclear jet-like structure seen in HST images of the galaxies, to give unprecedented spatial resolution of the galaxy inner regions. In 3C 135 and 3C 171, the spectra reveal clumpy emission line structures that indicate outward motions of a few hundred km s1^{-1} within a centrally illuminated and ionised biconical region. There may also be some low-ionisation high-velocity material associated with 3C 135. In 3C 264 and 3C 78, the jets have blue featureless spectra consistent with their proposed synchrotron origin. There is weak associated line emission in the innermost part of the jets with mild outflow velocity. These jets are bright and highly collimated only within a circumnuclear region of lower galaxy luminosity, which is not dusty. We discuss the origins of these central regions and their connection with relativistic jets.Comment: 15 pages incl Tables, 12 diagrams, To appear in A

    First ice core records of NO3− stable isotopes from Lomonosovfonna, Svalbard

    Get PDF
    Samples from two ice cores drilled at Lomonosovfonna, Svalbard, covering the period 1957–2009, and 1650–1995, respectively, were analyzed for NO3− concentrations, and NO3− stable isotopes (δ15N and δ18O). Post-1950 δ15N has an average of (−6.9 ± 1.9) ‰, which is lower than the isotopic signal known for Summit, Greenland, but agrees with values observed in recent Svalbard snow and aerosol. Pre-1900 δ15N has an average of (4.2 ± 1.6) ‰ suggesting that natural sources, enriched in the 15 N-isotope, dominated before industrialization. The post-1950 δ18O average of (75.1 ± 4.1) ‰ agrees with data from low and polar latitudes, suggesting similar atmospheric NOy (NOy = NO + NO2 + HNO3) processing pathways. The combination of anthropogenic source δ15N and transport isotope effect was estimated as −29.1 ‰ for the last 60 years. This value is below the usual range of NOx (NOx = NO + NO2) anthropogenic sources which is likely the result of a transport isotope effect of –32 ‰. We suggest that the δ15N recorded at Lomonosovfonna is influenced mainly by fossil fuel combustion, soil emissions and forest fires; the first and second being responsible for the marked decrease in δ15N observed in the post-1950s record with soil emissions being associated to the decreasing trend in δ15N observed up to present time, and the third being responsible for the sharp increase of δ15N around 2000

    Is There a Detectable Vishniac Effect?

    Full text link
    The dominant linear contribution to cosmic microwave background (CMB) fluctuations at small angular scales (less than one arcsec) is a second-order contribution known as the Vishniac or Ostriker-Vishniac effect. This effect is caused by the scattering of CMB photons off free electrons after the universe has been reionized, and is dominated by linear perturbations near the R_V =2 Mpc/(h Gamma/0.2) scale in the Cold Dark Matter cosmogony. As the reionization of the universe requires that nonlinear objects exist on some scale, however, one can compare the scale responsible for reionization to R_V and ask if a linear treatment is even feasible in different scenarios of reionization. For an Omega_0 = 1 cosmology normalized to cluster abundances, only about 65% of the linear integral is valid if reionization is due to quasars in halos of mass 10^9 solar, while 75% of the integral is valid if reionization was caused by stars in 10^6 solar mass halos. In lambda or open cosmologies, both the redshift of reionization and z_V are pushed further back, but still only 75% to 85% of the linear integral is valid, independent of the ionization scenario. We point out that all odd higher-order moments from Vishniac fluctuations are zero while even moments are non-zero, regardless of the gaussianity of the density perturbations. This provides a defining characteristic of the Vishniac effect that differentiates it from other secondary perturbations and may be helpful in separating them.Comment: 21 pages, 5 figures, accepted to the Astrophysical Journa
    corecore