13,335 research outputs found

    Parametric Four-Photon Generation of Picosecond Light at High ConversionEfficiency

    Get PDF
    Parametric four-photon interaction in isotropic media was studied in the saturation range. Up to 10% of input laser energy could be converted into a broad frequency spectrum ranging from the ultraviolet to the infrared. Parameters which influence the conversion efficiency are discussed

    Microscopic optical potential from chiral nuclear forces

    Full text link
    The energy- and density-dependent single-particle potential for nucleons is constructed in a medium of infinite isospin-symmetric nuclear matter starting from realistic nuclear interactions derived within the framework of chiral effective field theory. The leading-order terms from both two- and three-nucleon forces give rise to real, energy-independent contributions to the nucleon self-energy. The Hartree-Fock contribution from the two-nucleon force is attractive and strongly momentum dependent, in contrast to the contribution from the three-nucleon force which provides a nearly constant repulsive mean field that grows approximately linearly with the nuclear density. Together, the leading-order perturbative contributions yield an attractive single-particle potential that is however too weak compared to phenomenology. Second-order contributions from two- and three-body forces then provide the additional attraction required to reach the phenomenological depth. The imaginary part of the optical potential, which is positive (negative) for momenta below (above) the Fermi momentum, arises at second-order and is nearly inversion-symmetric about the Fermi surface when two-nucleon interactions alone are present. The imaginary part is strongly absorptive and requires the inclusion of an effective mass correction as well as self-consistent single-particle energies to attain qualitative agreement with phenomenology.Comment: 12 pages, 7 figures, added references, corrected typo

    Electroweak corrections and anomalous triple gauge-boson couplings in WW and WZ production at the LHC

    Full text link
    We have analysed the production of WW and WZ vector-boson pairs at the LHC. These processes give rise to four-fermion final states, and are particularly sensitive to possible non-standard trilinear gauge-boson couplings. We have studied the interplay between the influence of these anomalous couplings and the effect of the complete logarithmic electroweak O(\alpha) corrections. Radiative corrections to the Standard Model processes in double-pole approximation and non-standard terms due to trilinear couplings are implemented into a Monte Carlo program for p p -> 4f (+\gamma) with final states involving four or two charged leptons. We numerically investigate purely leptonic final states and find that electroweak corrections can fake new-physics signals, modifying the observables by the same amount and shape, in kinematical regions of statistical significance.Comment: 19 pages, LaTex, 12 eps figure

    Cosmological redshift distortion: deceleration, bias and density parameters from future redshift surveys of galaxies

    Get PDF
    The observed two-point correlation functions of galaxies in redshift space become anisotropic due to the geometry of the universe as well as due to the presence of the peculiar velocity field. On the basis of linear perturbation theory, we expand the induced anisotropies of the correlation functions with respect to the redshift zz, and obtain analytic formulae to infer the deceleration parameter q0q_0, the density parameter Ω0\Omega_0 and the derivative of the bias parameter dlnb/dzd\ln b/dz at z=0z=0 in terms of the observable statistical quantities. The present method does not require any assumption of the shape and amplitude of the underlying fluctuation spectrum, and thus can be applied to future redshift surveys of galaxies including the Sloan Digital Sky Survey. We also evaluate quantitatively the systematic error in estimating the value of β0Ω00.6/b\beta_0 \equiv \Omega_0^{0.6}/b from a galaxy redshift survey on the basis of a conventional estimator for β0\beta_0 which neglects both the geometrical distortion effect and the time evolution of the parameter β(z)\beta(z). If the magnitude limit of the survey is as faint as 18.5 (in B-band) as in the case of the Sloan Digital Sky Survey, the systematic error ranges between -20% and 10% depending on the cosmological parameters. Although such systematic errors are smaller than the statistical errors in the current surveys, they will dominate the expected statistical error for future surveys.Comment: 9 pages, 5 figs, aastex, ApJ in press, replaced version includes minor correction

    Monolithic Arrays of Grating-Surface-Emitting Diode Lasers and Quantum Well Modulators for Optical Communications

    Get PDF
    The electro-optic switching properties of injection-coupled coherent 2-D grating-surface-emitting laser arrays with multiple gain sections and quantum well active layers are discussed and demonstrated. Within such an array of injection-coupled grating-surface-emitting lasers, a single gain section can be operated as intra-cavity saturable loss element that can modulate the output of the entire array. Experimental results demonstrate efficient sub-nanosecond switching of high power grading-surface-emitting laser arrays by using only one gain section as an intra-cavity loss modulator

    22-GHz Modulation Bandwidth of Long Cavity DBR Laser by Using a Weakly Laterally Coupled Grating Fabricated by Focused Ion Beam Lithography

    Get PDF
    A 22-GHz directly modulated 3-dB bandwidth could be obtained by 1.3-mm-long weakly laterally coupled distributed Bragg reflector lasers fabricated by focused ion beam lithography. In addition to a high bandwidth, the lasers show a stable emission spectrum with side-mode suppression ratios of more than 40 dB and output powers exceeding 20 mW
    corecore