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Parametric four-photon interaction in isotropic media was studied in the saturation range. Up to 10c>~ of input 
laser energy could be converted into a broad frequency spectrum ranging from the ultraviolet to the infrared. Param- 
eters which influence the conversion efficiency are discussed. 

With picosecond light pulses of  high peak inten- 
sity superbroad light spectra were observed in iso- 
tropic media [ 1 - 4 ] .  It has been shown in ref. [4] 
that such light spectra are generated by stimulated 
parametric four-photon interactions due to the reso- 
nant structure of  the nonlinear susceptibility X (3). The 
continuous spectra ranging from the ultravi,)let to 
the infrared region present an interesting light source 
for picosecond spectroscopy. 

In this letter we present new data of  the paramet- 
ric light generation in various isotropic media in the 
saturation range. The studies are extended to the in- 
frared region. Calculations are presented which give 
a qualitative explanation of the experimental results. 

In our experiments we used a mode-locked N d -  
glass laser. A single light pulse was selected from the 
pulse train with an electro-optic shutter. The pulses 
were amplified to an energy value of  approximately 
5 mJ in a laser amplifier. The pulse duration was At 

6 ps. The pulses were nearly bandwidth limited 
(AF" At ~ 0.6). The intensity of  the light pulses at 
the samples was varied with filters and lenses. 
The following investigations were performed: 

1). The spectral distribution of  the parametrically 
generated light was measured. At high input laser in- 
tensities a fairly smooth spectrum is observed which 
extends from the onset of  electronic transitions in 
the ultraviolet to the vibrational absorption bands in 
the infrared region. After a rapid exponential rise 
around I L ~ 5 X 1010 W/cm 2 [4] the parametric light 

begins to saturate for larger input intensities. The 
spectral distribution of  the generated light was meas- 
ured with monochromators in conjunction with 
photomultipliers. (Full detection angle ~- 0.2 rad in 
the forward direction). Measurements at the 
Stokes side of  the laser frequency (7 L = 9455 cm - I )  
were carried out with interference filters and PbS- 
detectors. In fig. 1 the energy conversion per wave- 
number of  laser light into parametric light versus fre- 
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Fig. 1. Spectral distribution of parametric light in water 
(2 cm length) at a laser intensity of (a) 1 x 101 l W/cm 2 and 
(b) 5 Xl011W/cm 2. 
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quency is shown for the case of  H20.  (Cell length 
l = 2 cm). The two curves were taken at input peak 
intensities of  1 X 1011 W/cm 2 and 5 X 1011 W/cm 2. 
The curves indicate that the energy conversion is 
largest between FL and 2~ L with strong fall-off at 
higher and lower frequencies. The parametric light 
in the ultraviolet region (near the electronic absorp- 
tion bands) is down by approximately six orders 
of  magnitude compared to the values around 2~ L. 
In the primary parametric four photon process, 
COL + COl -+ CO3 + 034, signal light at CO3 is gener- 
ated between co L and 2CO L. At frequencies exceed- 
ing 2~L, light is generated by frequency conversion 

! t 
COL + COL + 033 -+ °34 and by higher order param- 
etric four-photon processes COl + CO3 -+ CO3 + co4 
[4,5]. CO~ represents the frequency of an electro- 
magnetic wave which was generated in the primary 

or following parametric process. The frequency con- 
version process becomes less efficient in the ultravio- 
let region because of  the increased phase mismatch 
[5~]. Furthermore the efficiency of the parametric 
four-photon processes is reduced with increasing or- 
der in the ultraviolet region. The smaller parametric 
light generation in the infrared will be discussed later. 

2). The total energy conversion of laser light into 
parametric light was determined for several substances 
by integrating spectral distribution curves such as 
those of  fig. 1. In fig. 2a the total energy conversion 
~tot is shown for H 2 0  (length l = 2 cm) as a function 
of input peak intensity. An energy conversion up to 
10% was observed. Within a factor of two, similar 
curves were obtained for D20  (l = 2 cm), quartz glass 
(Infrasil, l --- 3 cm) and a NaC1 crystal (l = 2 cm). The 
laser input peak intensity had to be kept below 
3 X 1011 W/cm 2 for Infrasil and NaC1 in order to 
avoid material damage. It should be emphasized that 
the intensity conversion is higher than the depicted 
energy conversion. Calculations show that approxi- 
mately one fifth of  the beam diameter and of the 
pulse duration contributes to parametric light genera- 
tion at the onset of  saturation [IL(0) ~ 5 X 
1010 W/cm2].  At this relatively low input intensity, 
an intensity conversion of 2% is estimated for the 
center of  the laser pulse. 

3). Our substances H20 ,  D20 ,  Infrasil and NaC1 

possess three properties favorable for efficient four 
photon parametric light generation. 

i). Their electronic absorption bands are in the 
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Fig. 2. a) Total energy conversion of laser light into paramet- 
ric light. Single picosecond light pulse of ~t L ~ 6 ps, k L = 
1.06/Jm in water (l = 2 cm). (b) Energy transmission of the 
same pulse versus input peak intensity. 

vacuum ultraviolet. The dispersion of the refractive in- 
dex and consequently the phase-mismatch are small 
in the visible and near ultraviolet. In addition, the loss 
of  parametric light by linear (ultraviolet) absorption 
and by nonlinear two- and three-photon (2u L + u3) 
absorption is not significant over most of  the spectral 
range. On the contrary, in substances such as CS2, 
C6H5NO 2 or CH2I 2 with electronic absorption bands 
in the near ultraviolet (X ~ 4000 A), the parametric 
light generation was found to be drastically reduced 
even in the visible part of  the spectrum (X ~ 6000 A). 

ii). The gain coefficients for stimulated Raman 
scattering are very low for our materials [6,7]. The 
input intensity required for efficient Raman scatter- 
ing is higher than the intensity value necessary for 
saturation of parametric light generation. In the NaC1 
crystal first-order Raman scattering is forbidden. For 
H20,  D20  and Infrasil an energy conversion into first 
Stokes Raman light of  ~ 10 -3 was measured in the 
saturation range for parametric four-photon interac- 
tion. In contrast, substances with high Raman gain 
showed considerable Raman conversion before para- 
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metric light generation could be observed and the 
broadband light production was suppressed at higher 
intensities. 

iii). The selected substances have low values of  the 
nonlinear refractive index n 2 [5,8,9] where n = n o 
+ n2E2/2. In the intensity range where our measure- 
ments were carried out [IL(0) ~< 7 × 1011 W/cm 2 for 
H20  and D 2 0 ; I L ( 0  ) ~< 3 × 1011 W/cm 2 for Infrasil 
and NaC1] self-focusing was not observed [10]. 
Self-focusing of  the laser beam leads to severe dis- 
turbances in the light propagation, e.g. inhomogene- 
ous intensity distribution in the beam cross-section 
and substantial beam divergence. In addition, the 
rapid intensity increase in part of  the beam gives rise 
to material breakdown with optical absorption by 
free electrons and final destruction of the medium. 

4). The parametric light generation in the infrared 
i.e. at the Stokes side of  the pump frequency was in- 
vestigated. It was found that the idler conversion 
efficiency r/4 decreases rapidly with frequency; it 
was substantially lower than the conversion efficiency 
7/3 at the equivalent signal frequency. For example, 
the energy conversion per wave number in the fre- 
quency range around v4 = 4300 cm -1 is lower by a 
factor of  approximately 104 compared to the value 
at the signal frequency ~3 = 2~'L - ~4 = 14600 c m - l '  
For the parametric process co~ + coL ~ 6°3 + 604 theory 
predicts/74//)3 ~-- co4n3/co3n3~4, where ha, 3 is the in- 
dex of refraction at the idler [4] and signal [3] fre- 
quency (co = 2try = 2rrc~). It is quite obvious that the 
simple equation does not explain our experimental 
observations. This fact is not surprising since satura- 
tion effects are not taken into account in deriving the 
equation. As soon as the laser light is depleted the 
parametric light generation rate is drastically reduced 
and the idler light, generated during the first part of  
the interaction length, suffers considerable linear ab- 
sorption. This explanation is verified by numerical cal- 
culations (see below). 

5). The energy transmission of the input pulse was 
measured in a sample of  H20  (I = 2 cm); transmission 
values are plotted versus input peak intensity in fig. 2b. 
Similar results were obtained for D 2 0  (l = 2 cm), 
Infrasil (l = 3 cm) and NaC1 (l = 2 cm). At low input 
intensities one starts with a transmission of T = 0.7 in 
H20  due to the linear absorption at the laser fre- 
quency. For IL(0) > 5 X 10 I0 W/cm 2 we find a non- 
linear decrease of  transmission. Comparing fig. 2a 

and fig. 2b we see a larger decrease of  laser transmis- 
sion than expected from the total energy conversion. 
The nonlinear loss of  laser light is most severe in the 
intensity range between IL(0) = 5 X 1010 W/cm 2 and 
1 × 1011 W/cm 2. In this range the transmission reduces 
by approximately AT= 12% while the total energy 
conversion increases to r?to t ~ 2 × 10 -3.  We believe 
that the observed loss of  laser light results from the 
infrared absorption of the parametrically generated 
idler light. The losses in the intensity range between 
5 × 1010 and 1 X 1011 W/cm 2 are roughly estimated 
as follows: For parametric signal generation between 
14000 and 19000 cm -1 the corresponding idler waves 
have frequencies below 5000 cm -1 . In the latter re- 
gion the infrared absorption of water is very large. As- 
suming that the idler light builds up to a total energy 
conversion of approximately r/4,tot = 5 X 10 4 and 
that this value is retained over a length of 2xl -~ 0.5 cm 
in spite of  an average absorption coefficient of ~4 

500 cm 1, a loss of  pump intensity of  A1 L 
a4Alr/4I t(0)  ~ 0 .13I  L (0) is estimated in agreement 

with the observed reduction of transmission. 
6). Stimulated parametric four-photon interaction 

was calculated including pump depletion [ 11 ] and 
linear absorption at the signal and idler frequency. 
The primary parametric process co L + co L --~ 603 + 6°4 
is considered here. The set of  differential equations 
for this case is given in eqs. ( l a ) - ( l c )  [5] 

3Eo(w L) i2rrco L . 
~ z  =--½~LE0(COL )- ncC E0(coL) 

X f dco 3 j dco4X(3)(--coL,--coL,co3,co4) 

× E0(co3)E0(co4) exp (--iAkz), ( la)  

0E0(w 3) i27rco 3 
3z - ½ a3E0(co3) n3c ( lb )  

X X(3)(-co 3 'coL 'coL ,--co4 ) EO(co4)E2L e x p ( i ~ z ) ,  

0E0(co 4) i27rco 4 
1 * 

~Z - -~ot4E0(co4) + - -  ( lc)  n4c 
(3)* *2 . - -  

N X (-co4 'coL 'COL,- co3)E0(co3)EOL exp(-1Akz).  

E0(cot) ,  E0(w3)  and E0(co4) are the complex am- 
plitudes of  the Fourier components  of  the electro- 
magnetic field E(t) = EL(t  ) +E3( t  ) + E4(t  ) at the fie- 
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quencies COL, 663 and 664, respectively. 

E0L = f E0(66L)d66 L = E L ( t  = O) 

is the peak ampli tude of the input  laser field. In refs. 
[4,5] it is shown that  

X*( CO4,66L,66L,--663)-~X( 603,6OL,66 L, o94). 

In a similar way it can be shown that  

X( -co L, 66L'663 '664 ) ~ X*(--663 '66L'66L'--664 )" 

In eqs. (1 b) and (1 c) the integrat ion over the frequency 

width of  the input  pulse around 66L has been carried 
out. This integrat ion is readily possible since the band- 
width  of  the pump  pulse is small. The s i tuat ion is 
different  in eq. ( l a )  since the broad spect rum of 
parametrical ly generated light with different  values of 

E0(663), E0(664), X, Ak = k 3 + k 4 -- 2kL, a 3 and a 4 
acts on the p u m p  field. Fur thermore ,  an integrat ion 
over the beam cross-section would  be necessary to cal- 
culate the energy conversion quant i ta t ively.  In order 
to come to practical solut ions of  eqs. (1 a) to (1 c) we 
simplified the problem as follows: In tens i ty  conver- 

sions were calculated with values ofE0(663),  E0(664), 
X, Ak, a 3 and a 4 assumed to be independen t  of fre- 
quency.  Under  these assumptions  the integrat ions in 
eq. ( l a )  could be readily carried out.  Eqs. ( l a )  to 
( l c )  reduce to a set of  four nonl inear  ordinary dif- 
ferential equat ions  by  rewriting the complex quanti-  
ties in ampli tudes and phases and by separating the 
real and imaginary parts. One finally arrives at three 
ampli tude equat ions  and one phase difference equa- 
t ion [12].  The initial condi t ions  for this set of  equa- 
t ions were de termined from the analytic solut ions 
obtained for the case of  no  deple t ion [4,5].  In figs. 
3a and 3b, numerical  solut ions of  the normalized 
pump,  signal and idler in tens i ty  are presented versus 
sample length for two sets of  parameters.  The two 
selected signal frequencies are ~3 = 1081 1 cm- 1 
(fig. 3a), and F 3 = 17157 cm -1 (fig. 3b). A bandwid th  
of the signal light of AF 3 = 1000 cm -1 was used and 
the field strengths/:20(663) and E0(664) as well as the 
parameters  a3 ,  a4 ,  X and Ak were assumed to be fre- 
quency independen t  wi th in  this f requency range. 
The linear absorpt ion of the laser light (F L = 
9455 cm -1)  is o~ L = 0.15 cm -1 in water. The values 
of the parameters  used in the calculations are listed 
in the figure caption.  In fig. 3a the idler absorpt ion  
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Fig. 3. Calculated build-up of parametric light versus inter- 
action length. Full line, normalized pump pulse intensity 
I L = IL(Z)/1L(O); dashed line, normalized signal intensity 
13 = 13(z)/IL(O); dash-dot line, normalized idler intensity 
14 = 14(z)/IL(O); dotted line normalized total intensity I t 
= [IL(Z) +13(z) +I4(z)]/IL(O). IL(0) = 2 X 1011 W/cm2 
aL = 0.15 cm -I ;I3(0) and 14(0) start from quantum noise. 
Calculations were made over a signal frequency range of 
1000 cm -1 . (a) Low idler absorption and low phase-mis- 
match. The following data were used: 73 = 10811 cm -l 
c~ 3 = 0.09 cm -1 , c~ 4 = 1.3 c m  - 1  , A k  = - -  3 . 3  c m  - 1  , X (3)' 
= 8 X l0 -14 esu, X (3)'' = 3 X 10 - is  esu. (b) Strong idler 
absorption and zero phase-mismatch. The data a r e  7 3 

= 17160 cm -l,c~a = 0.001 cm -1, a4 = 400 cm -] ,  Ak = 0, 
X (3)' = 9 X 10 -1~ esu, X (3)'' = - 8  X 10 -13 esu. 

a4 = 1.3 cm -1 is small at ~4 = 8100 cm 1. When the 
signal and idler in tensi ty  become larger than the de- 
pleted pump intensi ty  and when the phase relations 
between the three waves are favorable, the signal and 

idler follow the reverse process 663 + 664 ~ COL + COL. 
For increasing length of the sample an oscillatory be- 
havior is calculated [ 12]. After a path of 2 cm the 

total  light ou tpu t  Itot = 1L(/) + 13(/) + /4 ( / )  is reduced 
by 50% due to the small absorpt ion at the laser and 
idler frequency.  In fig. 3b the idler absorpt ion is 
higher, while the phase-mismatch is assumed to be 
zero (c~ 4 = 400 cm -1 ,  Ak = 0). The highest conver- 
sion of laser light into signal and idler light is obta ined 
in an early part  of the sample. For  a longer sample 
length,  the ou tpu t  of signal and idler is reduced due 
to laser light deplet ion and linear absorption.  The 
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total light output  is reduced to 38%. The curves de- 
picted in Fig. 3b show quite clearly that substantial 
laser depletion occurs with a signal intensity conver- 
sion of approximately 25%. It should be noted that 
in the saturation range four-photon frequency con- 
version and higher order parametric four-photon pro- 
cesses take place which modify the curves of fig. 3. 

7). The influence of self-phase modulation [1] of 

the pump pulse on the parametric four-photon light 
generation was investigated. A change of refractive 
index An leads to a change of phase of the pump 

pulse ~L(Z) = COLAnZ/c = 6kz. The high electric field 
of the pump pulse generates a value of An = n n o 
= l n2E2  L. The change of phase can be accounted 
for by using an effective phase-mismatch Akeff 

= Ak 28k, where Ak = k 3 + k 4 - 2k L is determined 
by the color dispersion of the medium. We have re- 
peated our calculations including the phase change 
of the pump pulse resulting from the nonlinear coef- 
ficient n 2 : a value of n 2 = - 2 . 5  × 10 -13 esu [5] was 
used corresponding to the experimental number for 
water. This value of n 2 leads to An = --1.6 × 10 4 
a n d 6 k = - 9 . 5 c m  1 a t l  L = 2 X 1 0 1 1 W / c m  2 . A s a r e -  
sult we obtained curves which were qualitatively 
similar to those with 8k = 0. It should be noted that 
in our four-photon process we have, in general, a 
large phase-mismatch Ak > 6k over most of the fre- 
quency range [4]. Self-phase modulation reduces the 
parametric light generation for Ak < 6k [ 13]. 

In account of the self-phase modulation discussed 
here the frequency spectrum of the laser pulse (IL 
--~ 5 X 1011 W/cm) is estimated to be broadened to 
A'ff L ~--½7Ln2E2L/CAt = 90 cm 1 during the short 
pulse duration of At = 6 X 10 -12 s. 

In summary we would like to state: bcoad spectra 
with energy conversion of up to 10% can be generated 
in different substances several cm in length. The satur- 
ation of the conversion efficiency is qualitatively ac- 

counted for by the depletion of the laser intensity. 
Absorption at the idler frequency appears to be the 
major cause for the laser attenuation. The absence of 
self-focusing and the snall contribution of stimulated 
Raman scattering make H20 , D20 , NaC1 and Infrasil 
glass very suitable materials for the generation of 
broadband picosecond pulses. 

The authors are grateful to Dr. A. Laubereau for 
valuable discussion and to W. Falkenstein for tech- 

nical assistance. 
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