673 research outputs found

    Allied Health Regional Workforce Analysis: Bay Area Region

    Get PDF
    Analyzes the racial/ethnic composition of workers in twenty-two health occupations and graduates of healthcare education programs in the Bay Area. Examines disparities by race/ethnicity in the types of occupations held, educational attainment, and wages

    Allied Health Regional Workforce Analysis: Central California

    Get PDF
    Analyzes the racial/ethnic compositions of workers in twenty-two health occupations and graduates of healthcare education programs in the Central Valley. Examines disparities by race/ethnicity in occupations held, educational attainment, and wages

    Effects of Dynamically Weighting Autonomous Rules in a UAS Flocking Model

    Get PDF
    Within the U.S. military, senior decision-makers and researchers alike have postulated that vast improvements could be made to current Unmanned Aircraft Systems (UAS) Concepts of Operation through inclusion of autonomous flocking. Myriad methods of implementation and desirable mission sets for this technology have been identified in the literature; however, this thesis posits that specific missions and behaviors are best suited for autonomous military flocking implementations. Adding to Craig Reynolds\u27 basic theory that three naturally observed rules can be used as building blocks for simulating flocking behavior, new rules are proposed and defined in the development of an autonomous flocking UAS model. Simulation validates that missions of military utility can be accomplished in this method through incorporation of dynamic event- and time-based rule weights. Additionally, a methodology is proposed and demonstrated that iteratively improves simulated mission effectiveness. Quantitative analysis is presented on data from 570 simulation runs, which verifies the hypothesis that iterative changes to rule parameters and weights demonstrate significant improvement over baseline performance. For a 36 square mile scenario, results show a 100% increase in finding targets, a 40.2% reduction in time to find a target, a 4.5% increase in area coverage, with a 0% attribution rate due to collisions and near misses

    Cytokine Expression in Chicken Peripheral Blood Mononuclear Cells after In Vitro Exposure to Salmonella enterica serovar Enteritidis

    Get PDF
    Cytokines are secreted proteins involved with cell recruitment and regulation of both innate and adaptive immune responses. They are essential for an effective host immune response to pathogens. The objective of this study was to determine the effect of Salmonella enterica serovar Enteritidis (S. Enteritidis) exposure and genetic line on cytokine mRNA expression level of cultured chicken peripheral blood mononuclear cells (PBMC). Interleukin-2, interleukin-6 (IL-6), CXCLi2, and transforming growth factor-β4 (TGF-B4) messenger ribonucleic acid expression was measured by quantitative reverse transcription-PCR assays in PBMC from 3 chicken lines (broiler, Leghorn, Fayoumi) after in vitro exposure to S. Enteritidis. The PBMC were isolated from uninfected birds and cultured overnight. The next day, live pathogenic S. Enteritidis was added to half of the cultures. All cultures were harvested after 2 or 4 h of exposure. Exposure to S. Enteritidis downregulated IL-6, CXCLi2, and TGF-β4 but not interleukin-2 mRNA expression. No significant genetic line or exposure time effects were detected. These findings demonstrate that exposure of chicken PBMC to S. Enteritidis can induce a rapid change in both proinflammatory (IL-6, CXCLi2) and antiinflammatory (TGF-β4) cytokine gene expression

    Cornell Commodity Promotion Research Program: Summary of Recent Research Projects

    Full text link
    NICPRE 97-1; R.B. 97-

    Allied Health Workforce Analysis: Sacramento-Northern California Region

    Get PDF
    Analyzes the racial/ethnic compositions of workers in twenty-two health occupations and graduates of healthcare education programs in Sacramento and northern California. Examines racial/ethnic disparities in occupations, educational attainment, and wages

    Editorial: IPPS 2022 - plant phenotyping for a sustainable future

    Get PDF
    Plants are a venue for addressing the challenges facing humanity. The need for a reliable supply of food, feed, materials, chemicals and energy as well as ways to manage agroecology and climate change are among the challenges that we can address through the sustainable use of plants and plant ecosystems. The research community needs to integrate plant systems approaches, from molecular to organismal to applications in the field and ecosystems, to increase productivity sustainably while using fewer land, water, and nutrient resources. In the past two decades, plant phenotyping research has developed a highly valuable portfolio of technologies, processes and infrastructures to address these questions (Pieruschka and Schurr, 2019). In the past, the creation of datasets was limited by low throughput sensing and image analysis (Tsaftaris et al., 2016). However, through the development of digital image analysis the previous phenotyping “bottleneck” has shifted towards a capacity problem, making it difficult to interpret vast datasets (especially in the face of plant x environment interactions), leading to an “interpretation bottleneck” (Smith et al., 2021). Innovative plant phenotyping approaches that reveal and target relevant traits are thus still needed to identify and quantify key traits and processes and to understand the dynamic interactions between genetics, molecular and biochemical processes, and the physiological responses to changes in the environment that lead to the development of a phenotype

    A blue light receptor that mediates RNA binding and translational regulation

    Get PDF
    Sensory photoreceptor proteins underpin light-dependent adaptations in nature and enable the optogenetic control of organismal behavior and physiology. We identified the bacterial light-oxygen-voltage (LOV) photoreceptor PAL that sequence-specifically binds short RNA stem loops with around 20 nM affinity in blue light and weaker than 1 µM in darkness. A crystal structure rationalizes the unusual receptor architecture of PAL with C-terminal LOV photosensor and N-terminal effector units. The light-activated PAL–RNA interaction can be harnessed to regulate gene expression at the RNA level as a function of light in both bacteria and mammalian cells. The present results elucidate a new signal-transduction paradigm in LOV receptors and conjoin RNA biology with optogenetic regulation, thereby paving the way toward hitherto inaccessible optoribogenetic modalities
    • …
    corecore