29 research outputs found
Optimal control and ultimate bounds of 1:2 nonlinear quantum systems
Using optimal control, we establish and link the ultimate bounds in time
(referred to as quantum speed limit) and energy of two- and three-level quantum
nonlinear systems which feature 1:2 resonance. Despite the unreachable complete
inversion, by using the Pontryagin maximum principle, we determine the optimal
time, pulse area, or energy, for a given arbitrary accuracy. We show that the
third-order Kerr terms can be absorbed in the detuning in order to lock the
dynamics to the resonance. In the two-level problem, we determine the
non-linear counterpart of the optimal -pulse inversion for a given
accuracy. In the three-level problem, we obtain an intuitive pulse sequence
similar to the linear counterpart but with different shapes. We prove the
(slow) logarithmic increasing of the optimal time as a function of the
accuracy
Why is autophagy important in human diseases?
The process of macroautophagy (referred to hereafter as autophagy), is generally characterized by the prominent formation of autophagic vesicles in the cytoplasm. In the past decades, studies of autophagy have been vastly expanded. As an essential process to maintain cellular homeostasis and functions, autophagy is responsible for the lysosome-mediated degradation of damaged proteins and organelles, and thus misregulation of autophagy can result in a variety of pathological conditions in human beings. Although our understanding of regulatory pathways that control autophagy is still limited, an increasing number of studies have shed light on the importance of autophagy in a wide range of physiological processes and human diseases. The goal of the reviews in the current issue is to provide a general overview of current knowledge on autophagy. The machinery and regulation of autophagy were outlined with special attention to its role in diabetes, neurodegenerative disorders, infectious diseases and cancer
Insulin Promotes the Proliferation of Human Umbilical Cord Matrix-Derived Mesenchymal Stem Cells by Activating the Akt-Cyclin D1 Axis
Background. The functions of insulin in mesenchymal stem cells (MSC) remain poorly understood. Methods. MSC from human umbilical cord matrix (UCM) cultured in serum-free media (SFM) with or without insulin were subjected to various molecular biological analyses to determine their proliferation and growth states, expression levels of Akt-cyclin D1 signaling molecules, and in vitro differentiation capacities. Results. Insulin accelerated the G1-S cell cycle progression of UCM-MSC and significantly stimulated their proliferation and growth in SFM. The pro-proliferative action of insulin was associated with augmented cyclin D1 and phosphorylated Akt expression levels. Akt inactivation remarkably abrogated insulin-induced increases in cyclin D1 expression and cell proliferation, indicating that insulin enhances the proliferation of UCM-MSC via acceleration of the G1-S transition mediated by the Akt-cyclin D1 pathway. Additionally, the UCM-MSC propagated in SFM supplemented with insulin exhibited similar specific surface antigen profiles and differentiation capacities as those generated in conventional media containing fetal bovine serum. Conclusions. These findings suggest that insulin acts solely to promote UCM-MSC proliferation without affecting their immunophenotype and differentiation potentials and thus have important implications for utilizing insulin to expand clinical-grade MSC in vitro
Berberine reduces fibronectin expression by suppressing the S1P-S1P2 receptor pathway in experimental diabetic nephropathy models.
The accumulation of glomerular extracellular matrix (ECM) is one of the critical pathological characteristics of diabetic renal fibrosis. Fibronectin (FN) is an important constituent of ECM. Our previous studies indicate that the activation of the sphingosine kinase 1 (SphK1)-sphingosine 1- phosphate (S1P) signaling pathway plays a key regulatory role in FN production in glomerular mesangial cells (GMCs) under diabetic condition. Among the five S1P receptors, the activation of S1P2 receptor is the most abundant. Berberine (BBR) treatment also effectively inhibits SphK1 activity and S1P production in the kidneys of diabetic models, thus improving renal injury. Based on these data, we further explored whether BBR could prevent FN production in GMCs under diabetic condition via the S1P2 receptor. Here, we showed that BBR significantly down-regulated the expression of S1P2 receptor in diabetic rat kidneys and GMCs exposed to high glucose (HG) and simultaneously inhibited S1P2 receptor-mediated FN overproduction. Further, BBR also obviously suppressed the activation of NF-κB induced by HG, which was accompanied by reduced S1P2 receptor and FN expression. Taken together, our findings suggest that BBR reduces FN expression by acting on the S1P2 receptor in the mesangium under diabetic condition. The role of BBR in S1P2 receptor expression regulation could closely associate with its inhibitory effect on NF-κB activation
Docosahexaenoic Acid Induces Cell Death in Human Non-Small Cell Lung Cancer Cells by Repressing mTOR via AMPK Activation and PI3K/Akt Inhibition
The anticancer properties and mechanism of action of omega-3 polyunsaturated fatty acids (ω3-PUFAs) have been demonstrated in several cancers; however, the mechanism in lung cancer remains unclear. Here, we show that docosahexaenoic acid (DHA), a ω3-PUFA, induced apoptosis and autophagy in non-small cell lung cancer (NSCLC) cells. DHA-induced cell death was accompanied by AMP-activated protein kinase (AMPK) activation and inactivated phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling. Knocking down AMPK and overexpressing Akt increased mTOR activity and attenuated DHA-induced cell death, suggesting that DHA induces cell death via AMPK- and Akt-regulated mTOR inactivation. This was confirmed in Fat-1 transgenic mice, which produce ω3-PUFAs. Lewis lung cancer (LLC) tumor cells implanted into Fat-1 mice showed slower growth, lower phospho-Akt levels, and higher levels of apoptosis and autophagy than cells implanted into wild-type mice. Taken together, these data suggest that DHA-induced apoptosis and autophagy in NSCLC cells are associated with AMPK activation and PI3K/Akt inhibition, which in turn lead to suppression of mTOR; thus ω3-PUFAs may be utilized as potential therapeutic agents for NSCLC treatment