81 research outputs found
Causal relationships between type 2 diabetes, glycemic traits and keratoconus
PurposeThe relationship between diabetes mellitus and keratoconus remains controversial. This study aimed to assess the potential causal relationships among type 2 diabetes, glycemic traits, and the risk of keratoconus.MethodsWe used a two-sample Mendelian randomization (MR) design based on genome-wide association summary statistics. Fasting glucose, proinsulin levels, adiponectin, hemoglobin A1c (HbA1c) and type 2 diabetes with and without body mass index (BMI) adjustment were used as exposures and keratoconus was used as the outcome. MR analysis was performed using the inverse-variance weighted method, MR-Egger regression method, weighted-mode method, weighted median method and the MR-pleiotropy residual sum and outlier test (PRESSO).ResultsResults showed that genetically predicted lower fasting glucose were significantly associated with a higher risk of keratoconus [IVW: odds ratio (OR) = 0.382; 95% confidence interval (CI) = 0.261–0.560; p = 8.162 × 10−7]. Genetically predicted lower proinsulin levels were potentially linked to a higher risk of keratoconus (IVW: OR = 0.739; 95% CI = 0.568–0.963; p = 0.025). In addition, genetically predicted type 2 diabetes negatively correlated with keratoconus (IVW: BMI-unadjusted: OR = 0.869; 95% CI = 0.775–0.974, p = 0.016; BMI-adjusted: OR = 0.880, 95% CI = 0.789–0.982, p = 0.022). These associations were further corroborated by the evidence from all sensitivity analyses.ConclusionThese findings provide genetic evidence that higher fasting glucose levels are associated with a lower risk of keratoconus. However, further studies are required to confirmed this hypothesis and to understand the mechanisms underlying this putative causative relationship
B cells Using Calcium Signaling for Specific and Rapid Detection of Escherichia coli O-157:H-7
A rapid and sensitive detection technology is highly desirable for specific detection of E. coli O-157:H-7, one of the leading bacterial pathogens causing foodborne illness. In this study, we reported the rapid detection of E. coli O-157: H-7 by using calcium signaling of the B cell upon cellular membrane anchors anti-E. coli O-157: H-7 IgM. The binding of E. coli O-157:H-7 to the IgM on B cell surface activates the B cell receptor (BCR)-induced Ca2+ signaling pathway and results in the release of Ca2+ within seconds. The elevated intracellular Ca2+ triggers Fura-2, a fluorescent Ca2+ indicator, for reporting the presence of pathogens. The Fura-2 is transferred to B cells before detection. The study demonstrated that the developed B cell based biosensor was able to specifically detect E. coli O-157:H-7 at the low concentration within 10 min in pure culture samples. Finally, the B cell based biosensor was used for the detection of E. coli O-157:H-7 in ground beef samples. With its short detection time and high sensitivity at the low concentration of the target bacteria, this B cell biosensor shows promise in future application of the high throughput and rapid food detection, biosafety and environmental monitoring
Down-Regulation of MicroRNA-214 Contributed to the Enhanced Mitochondrial Transcription Factor A and Inhibited Proliferation of Colorectal Cancer Cells
Background/Aims: Colon cancer, also known as colorectal cancer (CRC), is one of the most common malignant tumors globally. Although significant advances have been made for developing novel therapeutics, the mechanisms of progression of colorectal cancer are still poorly understood. Methods: In this study, we identified down-regulation of microRNA-214 (miR-214) as the contributing factor for CRC. Mitochondrial transcription factor A (TFAM) and miR-214 expression in tumor samples from colorectal cancer patients and cancer cell lines were examined by reverse transcription and real-Time PCR (qPCR) or Western Blotting. Results: Our data demonstrated that miR-214 was significantly down-regulated in the tissue samples from CRC patients as well as CRC derived cell lines. TFAM overexpression was also observed in CRC patients and identified as a target for miR-214. Knockdown of TFAM by miR-214 mimics significantly inhibited the proliferation of CRC cell lines. Also, down-regulation of TFAM inhibited nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) nuclear translocation and the expression of NF-κB depended genes. Conclusion: In conclusion, our data suggested that down-regulation of MiR-214 contributed to the enhanced TFAM expression and decreased proliferation of CRC cells
Thermally enhanced photoluminescence and temperature sensing properties of ScWO:Eu phosphors
Currently,lanthanide ions doped luminescence materials applying as optical
thermometers have arose much concern. Basing on the different responses of two
emissions to temperature, the fluorescence intensity ratio (FIR) technique can
be executed and further estimate the sensitivities to assess the optical
thermometry performances. In this study, we introduce different doping
concentrations of Eu ions into negative expansion material
ScWO:Eu, accessing to the thermal enhanced luminescence
from 373 to 548 K, and investigate the temperature sensing properties in
detail. All samples exhibit good thermally enhanced luminescence behavior. The
emission intensity of ScWO: 6 mol% Eu phosphors reaches
at 147.81% of initial intensity at 473 K. As the Eu doping concentration
increases, the resistance of the samples to thermal quenching decreases. The
FIR technique based on the transitions 5D0-7F1 (592 nm) and 5D0-7F2 (613 nm) of
Eu ions demonstrate a maximum relative temperature sensitivity of 3.063%
K-1 at 298 K for ScWO:Eu: 6 mol% Eu phosphors. The
sensitivity of sample decreases with the increase of Eu concentration.
Benefiting from the thermal enhanced luminescence performance and good
temperature sensing properties, the ScWO:Eu: Eu
phosphors can be applies as optical thermometers
Graphene-induced unique polarization tuning properties of excessively tilted fiber grating
By exploiting the polarization-sensitive coupling effect of graphene with the optical mode, we investigate the polarization modulation properties of a hybrid waveguide of graphene-integrated excessively tilted fiber grating (Ex-TFG). The theoretical analysis and experimental results demonstrate that the real and imaginary parts of complex refractive index of fewlayer graphene exhibit different effects on transverse electric (TE) and transverse magnetic (TM) cladding modes of the Ex-TFG, enabling stronger absorption in the TE mode and more wavelength shift in the TM mode. Furthermore, the surrounding refractive index can modulate the complex optical constant of graphene and then the polarization properties of the hybrid waveguide, such as resonant wavelength and peak intensity. Therefore, the unique polarization tuning property induced by the integration of the graphene layer with Ex-TFG may endow potential applications in all-in-one fiber modulators, fiber lasers, and biochemical sensors
An open science resource for establishing reliability and reproducibility in functional connectomics
Efforts to identify meaningful functional imaging-based biomarkers are limited by the ability to reliably characterize inter-individual differences in human brain function. Although a growing number of connectomics-based measures are reported to have moderate to high test-retest reliability, the variability in data acquisition, experimental designs, and analytic methods precludes the ability to generalize results. The Consortium for Reliability and Reproducibility (CoRR) is working to address this challenge and establish test-retest reliability as a minimum standard for methods development in functional connectomics. Specifically, CoRR has aggregated 1,629 typical individuals’ resting state fMRI (rfMRI) data (5,093 rfMRI scans) from 18 international sites, and is openly sharing them via the International Data-sharing Neuroimaging Initiative (INDI). To allow researchers to generate various estimates of reliability and reproducibility, a variety of data acquisition procedures and experimental designs are included. Similarly, to enable users to assess the impact of commonly encountered artifacts (for example, motion) on characterizations of inter-individual variation, datasets of varying quality are included
Recommended from our members
Kaiming Ye: Irradiation germicide ultraviolette pour la désinfection et la réutilisation des respirateurs N95
Cette présentation a été faite par Kaiming Ye. Le titre de la présentation est: “Irradiation germicide ultraviolette pour la désinfection et la réutilisation des respirateurs N95.”
--
Chaque mois, l'équipe COVID Information Commons (avec le Northeast Big Data Innovation Hub) rassemble un groupe de chercheurs étudiant de nombreux aspects de la pandémie actuelle, pour partager leurs recherches et répondre aux questions de notre communauté. Ces événements mettent en valeur les efforts continus des scientifiques dans la lutte contre le COVID-19, notamment les opportunités de collaboration
Recommended from our members
Kaiming Ye: Ultraviolet Germicidal Irradiation for Disinfecting and Reuse of N95 Respirators
This presentation was made by Kaiming Ye. The presentation’s title is: “Ultraviolet Germicidal Irradiation for Disinfecting and Reuse of N95 Respirators.” Funded by NSF Division of Chemical, Bioengineering, Environmental and Transport Systems (CBET) .
--
Every month, the COVID Information Commons Team (along with the Northeast Big Data Innovation Hub) brings together a group of researchers studying wide-ranging aspects of the current pandemic, to share their research and answer questions from our community. The events showcase scientists' ongoing efforts in the fight against COVID-19, including opportunities for collaboration
- …