8 research outputs found

    PINSPOT: An oPen platform for INtelligent context-baSed Indoor POsiTioning

    Get PDF
    This work proposes PINSPOT; an open-access platform for collecting and sharing of context, algorithms and results in the cutting-edge area of indoor positioning. It is envisioned that this framework will become reference point for knowledge exchange which will bring the research community even closer and potentially enhance collaboration towards more effective and efficient creation of indoor positioning-related knowledge and innovation. Specifically, this platform facilitates the collection of sensor data useful for indoor positioning experimentation, the development of novel, self-learning, indoor positioning algorithms, as well as the enhancement and testing of existing ones and the dissemination and sharing of the proposed algorithms along with their configuration, the data used, and with their results

    An Experience Report on the Effectiveness of Five Themed Workshops at Inspiring High School Students to Learn Coding

    Get PDF
    Today there is a high demand for computing programmers, and at the same time a shortage of skilled professionals. This has triggered the creation of many initiatives in the past few years, with the aim of reversing the phenomenon. To achieve this, such events are designed to promote a more appealing image for programming, both as a profession and as a skill. This paper describes one such initiative, which uses a unique blend of differently themed, parallel workshops to motivate high school students to learn programming. With the use of questionnaires, we survey the participants and present our findings concerning the effectiveness of these workshops to engage the participants, to promote the value of coding, and to encourage the participants to consider a career in the field. We evaluate our results both at a general level, as well as by comparison among five individually themed workshops

    Gradient-Based Hand Tracking Using Silhouette Data

    No full text
    Abstract. Optical motion capture can be classified as an inference problem: given the data produced by a set of cameras, the aim is to extract the hidden state, which in this case encodes the posture of the subject’s body. Problems with motion capture arise due to the multi-modal nature of the likelihood distribution, the extremely large dimensionality of its state-space, and the narrow region of support of local modes. There are also problems with the size of the data, the difficulty with which useful visual cues can be extracted from it, as well as how informative these cues might be. Several algorithms exist that use stochastic methods to extract the hidden state, but although highly parallelisable in theory, such methods produce a heavy computational overhead even with the power of today’s computers. In this paper we assume a set of pre-calibrated cameras and only extract the subject’s silhouette as a visual cue. In order to describe the 2D silhouette data we define a 2D model consisting of conic fields. The resulting likelihood distribution is differentiable w.r.t. the state, meaning that its global maximum can be located fast using gradient ascent search, given manual initialisation at the first frame. In this paper we explain the construction of the model for tracking a human hand; we describe the formulation of the derivatives needed, and present initial results on both real and simulated data.

    Background modeling methods for visual detection of maritime targets

    No full text
    We propose a system for real-time detection of maritime targets based on monocular video data. In the absence of a priori knowledge about their appearance, targets are detected implicitly via the statistical modeling of the scene’s nonstationary background. A probabilistic treatment regarding target compactness is also presented. The proposed system currently acts as a stand-alone maritime surveillance application, and may also be used as an early detection stage within a larger maritime target tracking framework

    PINSPOT: An oPen platform for INtelligent context-baSed Indoor POsiTioning

    No full text
    This work proposes PINSPOT; an open-access platform for collecting and sharing of context, algorithms and results in the cutting-edge area of indoor positioning. It is envisioned that this framework will become reference point for knowledge exchange which will bring the research community even closer and potentially enhance collaboration towards more effective and efficient creation of indoor positioning-related knowledge and innovation. Specifically, this platform facilitates the collection of sensor data useful for indoor positioning experimentation, the development of novel, self-learning, indoor positioning algorithms, as well as the enhancement and testing of existing ones and the dissemination and sharing of the proposed algorithms along with their configuration, the data used, and with their results
    corecore