386 research outputs found

    Model migration neural network for predicting battery aging trajectories

    Get PDF
    Accurate prediction of batteries’ future degradation is a key solution to relief users’ anxiety on battery lifespan and electric vehicle’s driving range. Technical challenges arise from the highly nonlinear dynamics of battery aging. In this paper, a feed-forward migration neural network is proposed to predict the batteries’ aging trajectories. Specifically, a base model that describes the capacity decay over time is first established from the existed battery aging dataset. This base model is then transformed by an input-output slope-and-bias-correction (SBC) method structure to capture the degradation of target cell. To enhance the model’s nonlinear transfer capability, the SBC-model is further integrated into a four-layer neural network, and easily trained via the gradient correlation algorithm. The proposed migration neural network is experimentally verified with four different commercial batteries. The predicted RMSEs are all lower than 2.5% when using only the first 30% of aging trajectories for neural network training. In addition, illustrative results demonstrate that a small size feed-forward neural network (down to 1-5-5-1) is sufficient for battery aging trajectory prediction

    Data Science-Based Full-Lifespan Management of Lithium-Ion Battery

    Get PDF
    This open access book comprehensively consolidates studies in the rapidly emerging field of battery management. The primary focus is to overview the new and emerging data science technologies for full-lifespan management of Li-ion batteries, which are categorized into three groups, namely (i) battery manufacturing management, (ii) battery operation management, and (iii) battery reutilization management. The key challenges, future trends as well as promising data-science technologies to further improve this research field are discussed. As battery full-lifespan (manufacturing, operation, and reutilization) management is a hot research topic in both energy and AI fields and none specific book has focused on systematically describing this particular from a data science perspective before, this book can attract the attention of academics, scientists, engineers, and practitioners. It is useful as a reference book for students and graduates working in related fields. Specifically, the audience could not only get the basics of battery manufacturing, operation, and reutilization but also the information of related data-science technologies. The step-by-step guidance, comprehensive introduction, and case studies to the topic make it accessible to audiences of different levels, from graduates to experienced engineers

    Chemoselective nitro reduction and hydroamination using a single iron catalyst

    Get PDF
    An amine-bis(phenolate) iron(iii) complex catalyses both the chemoselective reduction of nitroarenes and the formal hydroamination of highly substituted olefins.</p

    HSD-001 Real DGPS Ocean Survey Location System

    Get PDF
    The HSD-001 high precision Real DGPS Ocean Survey Location System, validated by the Departmental Level Assessment in August 1992, is the first system to be used in China which incorporates GPS for dynamic positioning at sea. Characterized by a coordinate differential deviation of ±4 m, and a pseudo-range deviation of ±2-3 m, the system has filled an existing gap in China in this respect. A wide range of application in fields such as Ocean Survey, Marine Engineering Prospecting, Ocean Oil and Mineral Exploration, can be expected from it

    Data Science-Based Full-Lifespan Management of Lithium-Ion Battery

    Get PDF
    This open access book comprehensively consolidates studies in the rapidly emerging field of battery management. The primary focus is to overview the new and emerging data science technologies for full-lifespan management of Li-ion batteries, which are categorized into three groups, namely (i) battery manufacturing management, (ii) battery operation management, and (iii) battery reutilization management. The key challenges, future trends as well as promising data-science technologies to further improve this research field are discussed. As battery full-lifespan (manufacturing, operation, and reutilization) management is a hot research topic in both energy and AI fields and none specific book has focused on systematically describing this particular from a data science perspective before, this book can attract the attention of academics, scientists, engineers, and practitioners. It is useful as a reference book for students and graduates working in related fields. Specifically, the audience could not only get the basics of battery manufacturing, operation, and reutilization but also the information of related data-science technologies. The step-by-step guidance, comprehensive introduction, and case studies to the topic make it accessible to audiences of different levels, from graduates to experienced engineers

    Automotive Battery Equalizers Based on Joint Switched-Capacitor and Buck-Boost Converters

    Get PDF
    A series of integrated equalizers based on joint buck-boost (BB) and switched-capacitor (SC) converters are proposed for balancing the voltages of series-connected battery packs. All these equalizers realize the any-cells-to-any-cells (AC2AC) equalization mode without increasing the count of MOSFETs and drivers. Corresponding operational principles are analyzed and the expressions of balancing currents are derived by analytical methods and verified by experimental waveforms. According to the comparative balancing experiments for four and six series-connected Li-ion cells, one proposed CBB-PCSC equalizer, which achieves the dual AC2AC balancing modes through the integration of both coupled buck-boost (CBB) and parallel-connected switched-capacitor (PCSC) converters, leads to the highest balancing speed and efficiency. Moreover, compared with several conventional equalizers, this CBB-PCSC topology also has the compact size and low cost, making it become a well-performing integrated topology for automotive battery voltages equalization
    • …
    corecore