94 research outputs found

    Influence of laser cutting conditions on electrical characteristics of half-size bifacial silicon solar cells

    Get PDF
    Abstract(#br)The half-size bifacial silicon solar cells have garnered significant research attention in photovoltaic (PV) modules because they render enhanced power output. Herein, the influence of cutting surface and scribing iteration times on electrical characteristics of bifacial silicon solar cells is investigated in detail. The results reveal that the cutting process should be carried out from the rear side and scribing iteration times should be twice. Moreover, we have studied the cutting losses of n-type passivated emitter and rear totally diffused (n-PERT) bifacial solar cells and demonstrated that not mechanical breaking but laser scribing is a major source of losses during the cell separation process. In addition, the damage induced by the cut was systematically investigated and it was observed that the heat-affected zone resulted in negligible damage under optimal cutting conditions. Overall, n-PERT half-cell bifacial modules, sectioned under optimal cutting conditions, can maintain high efficiency and excellent reliability

    CE-BLAST makes it possible to compute antigenic similarity for newly emerging pathogens

    Get PDF
    Major challenges in vaccine development include rapidly selecting or designing immunogens for raising cross-protective immunity against different intra-or inter-subtypic pathogens, especially for the newly emerging varieties. Here we propose a computational method, Conformational Epitope (CE)-BLAST, for calculating the antigenic similarity among different pathogens with stable and high performance, which is independent of the prior binding-assay information, unlike the currently available models that heavily rely on the historical experimental data. Tool validation incorporates influenza-related experimental data sufficient for stability and reliability determination. Application to dengue-related data demonstrates high harmonization between the computed clusters and the experimental serological data, undetectable by classical grouping. CE-BLAST identifies the potential cross-reactive epitope between the recent zika pathogen and the dengue virus, precisely corroborated by experimental data. The high performance of the pathogens without the experimental binding data suggests the potential utility of CE-BLAST to rapidly design cross-protective vaccines or promptly determine the efficacy of the currently marketed vaccine against emerging pathogens, which are the critical factors for containing emerging disease outbreaks.Peer reviewe

    Do marine planktonic ciliates follow Bergmann's rule?

    Get PDF
    Body size is a fundamental trait determining individual fitness and ecological processes. Reduction in body size with increasing temperature has been widely observed in most ectotherms and endotherms, known as Bergmann's rule. However, we lack data to assess if ciliates, the major consumers of marine primary production, follow Bergmann's rule and what drives the distributions of their cell size. Here, we examined a data set (287 samples) collected across the global oceans to investigate biogeographic patterns in the mean cell-size of ciliate communities. By measuring the sizes of every ciliate cell ( 300 per sample), we found that community cell-size increased with increasing latitude, conforming to Bergmann's rule. We then addressed the cause. Temperature was a main driver of the trend. Ciliate community mean cell-size decreased 34% when temperature increased from 3.5 to 31°C, implying that temperature may be a direct physiological driver. In addition, prey (phytoplankton) size also influenced the trend, with ciliate size increasing by 35% across the gradient of phytoplankton size (0.6–15.5 μm). Generally, these findings emphasized the importance of how both biotic and abiotic factors affect size distribution of marine ciliates, a key component of pelagic ecosystems. Our novel, extensive dataset and the predictive trends arising from them contribute to understanding how climate change will influence pelagic ecosystem functions

    Purine synthesis promotes maintenance of brain tumor initiating cells in glioma

    Get PDF
    Brain tumor initiating cells (BTICs), also known as cancer stem cells, hijack high-affinity glucose uptake active normally in neurons to maintain energy demands. Here we link metabolic dysregulation in human BTICs to a nexus between MYC and de novo purine synthesis, mediating glucose-sustained anabolic metabolism. Inhibiting purine synthesis abrogated BTIC growth, self-renewal and in vivo tumor formation by depleting intracellular pools of purine nucleotides, supporting purine synthesis as a potential therapeutic point of fragility. In contrast, differentiated glioma cells were unaffected by the targeting of purine biosynthetic enzymes, suggesting selective dependence of BTICs. MYC coordinated the control of purine synthetic enzymes, supporting its role in metabolic reprogramming. Elevated expression of purine synthetic enzymes correlated with poor prognosis in glioblastoma patients. Collectively, our results suggest that stem-like glioma cells reprogram their metabolism to self-renew and fuel the tumor hierarchy, revealing potential BTIC cancer dependencies amenable to targeted therapy

    史景迁的撰史方法--以TREASON BY THE BOOK为例 = JONATHAN SPENCE AS A HISTORIAN

    No full text
    Bachelor'sBACHELOR OF ARTS (HONOURS

    A Review of Non-Contact Water Level Measurement Based on Computer Vision and Radar Technology

    No full text
    As pioneering non-contact water level measurement technologies, both computer vision and radar have effectively addressed challenges posed by traditional water level sensors in terms of maintenance cost, real-time responsiveness, and operational complexity. Moreover, they ensure high-precision measurements in appropriate conditions. These techniques can be seamlessly integrated into unmanned aerial vehicle (UAV) systems, significantly enhancing the spatiotemporal granularity of water level data. However, computer-vision-based water level measurement methods face the core problems of accurately identifying water level lines and elevation calculations, which can lead to measurement errors due to lighting variations and camera position offsets. Although deep learning has received much attention in improving the generation, the effectiveness of the models is limited by the diversity of the datasets. For the radar water level sensor, the hardware structure and signal processing algorithms have to be further improved. In the future, by constructing more comprehensive datasets, developing fast calibration algorithms, and implementing multi-sensor data fusion, it is expected that the robustness, accuracy, and computational efficiency of water level monitoring will be significantly improved, laying a solid foundation for further innovations and developments of hydrological monitoring

    Non‐BCMA targeted CAR‐T cell therapies for multiple myeloma

    No full text
    Abstract Despite the emergence of new strategies in recent years, multiple myeloma (MM) is still an incurable disease with poor outcome. As a new treatment, chimeric antigen receptor (CAR‐) T cell therapy brought exciting news to patients with relapsed or refractory MM. B‐cell maturation antigen (BCMA) is ubiquitously expressed on the surface of myeloma cells and is considered an “ideal” target of CAR‐T cell. BCMA‐targeted CAR‐T cell therapies achieved remarkable efficacy in relapsed or refractory MM patients in several clinical trials. However, some patients had no response or relapsed after BCMA targeted CAR‐T cell therapy. Myeloma cells also express other surface markers which might be used as targets for CAR‐T cell therapy. Encouragingly, CAR‐T cells targeting these non‐BCMA markers are being tested in clinical trials or under preclinical investigation, already showing some promising results. In this review, we summarized and provided an update of these advances

    Successional action of Bacteroidota and Firmicutes in decomposing straw polymers in a paddy soil

    No full text
    Abstract Background Decomposition of plant biomass is vital for carbon cycling in terrestrial ecosystems. In waterlogged soils including paddy fields and natural wetlands, plant biomass degradation generates the largest natural source of global methane emission. However, the intricate process of plant biomass degradation by diverse soil microorganisms remains poorly characterized. Here we report a chemical and metagenomic investigation into the mechanism of straw decomposition in a paddy soil. Results The chemical analysis of 16-day soil microcosm incubation revealed that straw decomposition could be divided into two stages based on the dynamics of methane, short chain fatty acids, dissolved organic carbon and monosaccharides. Metagenomic analysis revealed that the relative abundance of glucoside hydrolase (GH) encoding genes for cellulose decomposition increased rapidly during the initial stage (3–7 days), while genes involved in hemicellulose decomposition increased in the later stage (7–16 days). The increase of cellulose GH genes in initial stage was derived mainly from Firmicutes while Bacteroidota contributed mostly to the later stage increase of hemicellulose GH genes. Flagella assembly genes were prevalent in Firmicutes but scarce in Bacteroidota. Wood–Ljungdahl pathway (WLP) was present in Firmicutes but not detected in Bacteroidota. Overall, Bacteroidota contained the largest proportion of total GHs and the highest number of carbohydrate active enzymes gene clusters in our paddy soil metagenomes. The strong capacity of the Bacteroidota phylum to degrade straw polymers was specifically attributed to Bacteroidales and Chitinophagales orders, the latter has not been previously recognized. Conclusions This study revealed a collaborating sequential contribution of microbial taxa and functional genes in the decomposition of straw residues in a paddy soil. Firmicutes with the property of mobility, WLP and cellulose decomposition could be mostly involved in the initial breakdown of straw polymers, while Bacteroidota became abundant and possibly responsible for the decomposition of hemicellulosic polymers during the later stage
    corecore