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CE-BLAST makes it possible to compute antigenic
similarity for newly emerging pathogens
Tianyi Qiu1,2, Yiyan Yang1, Jingxuan Qiu1, Yang Huang2, Tianlei Xu1,3, Han Xiao4, Dingfeng Wu1,

Qingchen Zhang1, Chen Zhou1, Xiaoyan Zhang2, Kailin Tang1, Jianqing Xu 2 & Zhiwei Cao1

Major challenges in vaccine development include rapidly selecting or designing immunogens

for raising cross-protective immunity against different intra- or inter-subtypic pathogens,

especially for the newly emerging varieties. Here we propose a computational method,

Conformational Epitope (CE)-BLAST, for calculating the antigenic similarity among different

pathogens with stable and high performance, which is independent of the prior binding-assay

information, unlike the currently available models that heavily rely on the historical experi-

mental data. Tool validation incorporates influenza-related experimental data sufficient for

stability and reliability determination. Application to dengue-related data demonstrates high

harmonization between the computed clusters and the experimental serological data,

undetectable by classical grouping. CE-BLAST identifies the potential cross-reactive epitope

between the recent zika pathogen and the dengue virus, precisely corroborated by experi-

mental data. The high performance of the pathogens without the experimental binding data

suggests the potential utility of CE-BLAST to rapidly design cross-protective vaccines or

promptly determine the efficacy of the currently marketed vaccine against emerging

pathogens, which are the critical factors for containing emerging disease outbreaks.
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Emerging and re-emerging diseases caused by infectious
pathogens are identified almost every year and remain a
continuous threat to public health. Recent examples include

influenza, avian flu, dengue, severe acute respiratory syndrome
(SARS), and Ebola hemorrhagic fever (EHF), with the latest being
microcephaly caused by the zika virus1. To combat these epi-
demics, vaccines are consistently needed for the purpose of dis-
ease control and prevention. A critical step in vaccine
development is to characterize the antigenicity difference among
various pathogens so as to select or design proper immunogens
that are able to raise cross-protective immunity. To date, deter-
mining antigenic variation of the emerging pathogens has relied
heavily on the results from the immune-binding assays. For
instance, the hemagglutination inhibition (HI) assay is tradi-
tionally performed to determine the antigenic changes in circu-
lating influenza viruses from those of the previous vaccines2.
Antisera from multiple donors are routinely screened for binding
against virus strains in search of a potential broad-spectrum
antibody for human immunodeficiency virus (HIV)3–5. Recently,
comprehensive serological tests were accomplished on both ani-
mals and vaccinated or infected humans to calibrate the ser-
ological relationships between the subtypic dengue viruses
(DENV)6. Despite the wide adoption for common infectious
diseases, immune-based experiments are often found to exhibit
limited application in the case of significant outbreaks or emer-
gence of new virus subtypes, owing to various factors of mobility,
antiserum dilution, standardization, and automation. Thus, new
automated technologies with high-throughput and quick
response are always desired, so as to meet the increasing demand
of newly emerging epidemics. Accordingly, the development of
computational strategies independent of immunoassays may be
helpful for assisting the antigenicity measurement in a rapid and
timely manner.

Till now, in silico methods to compute antigenicity have been
developed primarily for only a few specific pathogens, based on
the knowledge acquired from massive accumulation of the his-
torical experimental data, such as for influenza virus or foot-and-
mouth disease virus (FMDV)7–9. However, for numerous other
pathogens and new pathogens for which the binding assays
remain sparse or insufficient, no computational model has yet
been reported. In this study, we designed a generalized and
immunoassay-independent tool, Conformational Epitope (CE)-
BLAST, to predict the antigenicity of different pathogens.

Similar to the concept underlying sequence BLAST with the
sequence similarity inferring functional similarity, CE-BLAST
aims to compare the conformational epitopes directly to suggest
the relative antigenicity distance between antigens. In the adap-
tive humoral immune system, the pathogenic antigens will be
recognized and bound by specific antibodies at the conforma-
tional epitopes generally comprising several segments that are
discontinuous in sequence, but close in three-dimensional (3D)
conformation10,11. This recognition process features high sensi-
tivity and specificity, where only the mutated antigens with highly
similar conformational epitopes are able to cross-react with the
same antibody. Arising mutants with substantially different
conformational epitopes are likely the causing antigenic variants
to previous vaccines, and may lead to new outbreaks in the
community12–14. Therefore, comparing the conformational epi-
topes directly may provide clues to infer antigenic similarity of
the pathogenic antigens. This algorithm takes complete con-
sideration of the structural and the physicochemical micro-
environment variations from a 3D viewpoint caused by
mutations, which are summarized into a comprehensive finger-
print for each epitope residue. For each input antigen with the
structure information, the conformational epitope will be trans-
lated into a series of fingerprints and compared with the

predefined or user-uploaded datasets through CE-BLAST, then a
list of hit-epitope structures with predicted similarity scores will
be provided in descending order as output.

The ability of CE-BLAST to detect the antigenic variance is
rigorously evaluated using different sets of immune-assay data on
both intra- and inter-subtypic pathogens, as well as cross-virus
cases. It is initially tested with intra-subtypic pathogen data of
influenza A/H3N2 antigen including 3867 historical HI assays,
and then combined with the experimental validation on a new
antigen of A/H3N2. Then, its ability to classify serological rela-
tionships is further confirmed on DENV subtypes via 1072 ser-
ological data results. Notably, the application scope of CE-BLAST
is extended to a cross-virus case to suggest the potential cross-
reactive epitopes between ZIKV and DENV in the Flavivirus
family. For convenient use, a web server has been constructed
with built-in epitope libraries containing simulated structure
databases of the HA antigen for influenza virus (A/H1N1 & A/
H3N2), Envelope (E) antigen for DENV and ZIKV, and known
conformational epitopes derived from the Protein Databank
(PDB) immune complex. The web server of CE-BLAST can be
accessed at http://badd.tongji.edu.cn/ce_blast/ or http://bidd2.
nus.edu.sg/czw/ce_blast/.

Results
Model construction of CE-BLAST. The design of the CE-BLAST
model encompasses three steps: (1) deriving a group of finger-
prints for each conformational epitope, (2) aligning the con-
formational epitopes according to their fingerprints, and (3)
scoring the similarity according to the epitope alignment. In the
first step, the epitope fingerprints are composed of individual
fingerprints of each epitope residue, which are described by the
residual layout and the physicochemical properties of the residual
microenvironment via spin-image and shell-structure models. In
the second step, a “seed-grow” strategy is subsequently adopted to
identify the best local alignment, according to the fingerprint
comparison between conformational epitopes. In the third step,
the similarity score considers not only the number of matched
residues, but also the evolutional distance between matched
positions, as well as the similarity of the corresponding micro-
environments for each residue. CE-BLAST begins with con-
formational epitope structures and requires no experimental
binding data. Such unsupervised performance ensures its adapt-
ability for new antigens without prior assays. Additional details
can be found in the Methods.

The workflow of CE-BLAST is illustrated in Fig.1. The
algorithm accepts epitope structures in the protein data bank
(PDB) format as input and then converts the structure
information into epitope fingerprint. Users can search against
the built-in epitope database or search within their input data files
to find antigenically similar epitopes for the queried files. Finally,
the results are provided as a hit list including the ID of each hit
epitope and the corresponding similarity score.

In view of the extensive computational time required for
fingerprints derivation, we have modeled thousands of represen-
tative HA structures for influenza H3N2 and H1N1 antigens, and
calculated their epitope fingerprints based on the predefined
epitope sites. Furthermore, the E protein of two Flaviviruses (both
monomer and dimer), DENV and ZIKV, were also premodeled
and added into the built-in database. Currently, CE-BLAST
contains three built-in epitope databases including: (1) 559
known epitope structures derived from the immune complexes in
the PDB database; (2) conformational structures of 1284- and
1725-modeled HA structures representing 16,672 H1N1 strains
and 15,238 H3N2 strains, respectively; and (3) conformational
structures of 1143- and 68-modeled E protein representing 4081
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DENV strains and 441 ZIKV strains, respectively. Validations of
CE-BLAST on conformational epitopes can be found in
Supplementary Note 1.

High and robust performance on HI data of influenza H3. To
test whether CE-BLAST can predict the cross-reactivity of intra-
subtypic pathogens, influenza H3 was initially selected owing to

the massive accumulation of HI assay values and sequence data.
In this study, a complete historical HI dataset was collected to
validate CE-BLAST, as well as to test the performance of the
available tools specific to influenza15–17. Mutual HI assay values
of 3867 HA pairs of influenza A/H3N2 strain were collected,
representing the most abundant HI validation dataset yet repor-
ted (Supplementary Note 2). The antigenically similar or varied
HA pairs were then classified according to the classical cutoff of

Input

Selecting epitope areas Mapping to antigenic site

Epitope fingerprint
Upload PDB files

Searching against
epitope database

Common antigen database

Lysozyme

Glycoprotein

Neuramidinase

Hemagglutinin database Envelope protein database

DENV
Uploaded
structure 1

Uploaded
structure 2

Uploaded
structure n

ZIKVH1N1

H3N2

Customized epitopes

Aga
ins

t b
uil

t-in
 da

tab
as

e Against user-defined dataset

Uploaded influenza
sequence files

ALA CYS ARG ASP ASN MET

Detail report

Download report in detail Output and visualization

a

b

c

Fig. 1Model workflow of CE-BLAST. a The input files for CE-BLAST can be either the PDB structure of any protein antigen or the HA sequences of influenza
A/H1N1 and H3N2 antigens. After the epitope sites are selected, CE-BLAST can automatically calculate the fingerprints for each epitope structure. b The
epitope fingerprints are used to search against a built-in epitope database or a self-defined dataset that is uploaded by the user. c Output results are
provided as a list of hit epitope structures with similarity scores in descending order. The user can also compare the structural differences using
visualization links
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Fig. 3 Predicting the protective spectrum for a new vaccine (Con H3) of the influenza A/H3N2 strain by CE-BLAST. a Antigenic clustering results between
HA epitopes of 679 influenza strains. Strains with identical HA epitopes as the new vaccine were marked in green and labeled as Con H3. The pink region
shows the potential antigenically similar or cross-reactive strains to Con H3. The locations of the three strains inside the spectrum are marked in green,
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the antigenic distance Dabð Þ transformed from mutual HI
values17 (Supplementary Note 3). The potential cross-reactivities
of the corresponding HA pairs were also predicted by CE-BLAST
as similar or varied after structural modeling (Methods) of the
679 HA1 antigens. Compared to the results from HI tests, a high
classification performance with area under ROC curve (AUC)
value over 0.917 could be achieved by CE-BLAST on 16 classical
antigenic sites. Results for different antigenic sites were also tested
with similar performance (Supplementary Fig. 1).

In addition, we simulated the prediction results of CE-BLAST
and other peers by different training data size with different data
from 1968 to 2013 via a sliding window of 5 years, with training
data continually increasing and testing continually decreasing
(Methods). As almost all the available in silico tools of influenza
comprise supervised models, three assay-trained methods were
chosen as representative peers including Lees’ method17, Anti-
genCO15, and a most recent method from Qiu16, considering
their repeatability and accessibility. As shown in Fig. 2, the overall
prediction abilities of the supervised models varied differently
across different dates, with AUC value below 0.65 at the
beginning of testing period in 1972. When the size of training

data kept increasing, their performances become relatively stable
with AUC value over 0.8 after 1992. In comparison, CE-BLAST
gave high performance of AUC value of around 0.9 from the
beginning of 1972, and maintained a consistently high and stable
AUC value across the entire testing periods. As an unsupervised
method, the prominent value of CE-BLAST appears to be able to
process the fast antigenic matching of new antigens where no
appropriate serology exists. Subsequently, we thus extended the
prediction ability of our tool to new antigens from different
pathogens.

Reliable prediction for a new influenza H3 vaccine. A new
vaccine, named “Con H3”, was artificially designed for influenza
H3 without HI data through the consensus sequence of the
reported A/H3N2 strains from the years ranging from 2006 to
2009, obtained from the National Center for Biotechnology
Information (NCBI). After querying against the 679 HA epitopes
described above, CE-BLAST gave a potential similarity profile,
with the protection spectrum of Con H3 shown in pink in Fig. 3a.
Then, seven strains (Supplementary Table 1) including three
inside and four outside of the predicted protection spectrum were
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Fig. 4 Subtype grouping of dengue virus by CE-BLAST. a 3D antigenic mapping of 28 dengue virus strains based on the serological data from Katzelnick
et al.6 by MDS. b 2D antigenic mapping of Fig. 4a. c Antigenic clustering of 47 strains by CE-BLAST similarity score. d Traditional grouping by sequence
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randomly selected for experimental validation. Sequence com-
parison between “Con H3” and the seven selected strains can be
found in Supplementary Fig. 2. Notably, all the Con H3-
immunized mice (5 mice per group) mounted significant neu-
tralization activities against the three strains inside the protection
spectrum, yielding geometric mean titer (GMT) values of 12,150
against WI05 H3 (A/Wisconsin/67/2005), 2786 against BR07 H3
(A/Brisbane/10/2007), and 2111 against FJ02 H3 (A/Fujian/
2002). In contrast, only marginal responses (≤400) were elicited
against MO99 H3 (A/Moscow/10/1999). No responses to the
other three strains (≤50) were observed in comparison with the
control group (Supplementary Table 2).

To further corroborate the above neutralization data, we
generated monoclonal neutralizing antibodies from Con H3-
vaccinated mice. A cross-reactive neutralizing antibody desig-
nated as 6A7 was identified from among 2400 fusion-cell clones
between H3-immunized mice splenocytes and mice myeloma
cells, with neutralization activities tested subsequently. The

experimental results, shown in Fig. 3b, agree well with the CE-
BLAST predictions (Supplementary Table 3). In addition, the
prediction accuracy of the three chosen peer algorithms was also
tested on the new vaccine of “Con H3” at different time points,
the results from which demonstrated that CE-BLAST out-
performed the three peers, in terms of both accuracy and
reliability (Supplementary Tables 4-6).

Correct prediction of serological topology for DENV subtypes.
To further test the generality of CE-BLAST toward newly
emerged pathogens, the antisera data of DENV were collected
from a large-scale study on the African green monkey6. In this
cited study, 36 sera samples derived from the monkeys injected
with corresponding vaccine strains were tested individually
against 47 DENV strains of four different serotypes. After
removing the un-interpretable data with undone and self-reactive
titers <10, the remaining titer data of 1072 strain pairs were
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Fig. 5 Predicting the potential cross-reactive epitope between DENV and ZIKV. a–c Workflow of the potential cross-reactive area (CRA) detection by CE-
BLAST between ZIK and DENV. a: Two E antigens to be compared with domains I, II, and III marked in yellow, magenta, and blue, respectively; b: circular
patches are screened and compared on the antigen surface; c: the cross-reactive frequency among sampling structures between corresponding patches
predicted by CE-BLAST. Each patch is labeled by the center residue in the column, and each row represents four DENV types. Magenta dashed boxes show
the consistent CRAs across different DENV subtypes, whereas yellow box shows the weak one. Residues in different domains are marked accordingly on
the bars over the heat map. d–h Potential cross-reactive epitope (CRE) mapping to the E monomer structure of ZIKV. d–g: the predicted CRE is shown in
turquoise for four DENV serotypes respectively; h: overlapping CRE of ZIKV across DENV subtypes. i–k Predicted CRE of the E dimer structure of ZIKV,
compared with experimental results. i: predicted CRE by CE-BLAST for the E dimer; j: binding interface derived from the crystal structures (PDB id:5LCV); k:
important residues computed by interaction force from Barba-Spaeth et al.22. All CREs have been circled for clarity
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included as our validation set. We modeled 47 E protein struc-
tures for CE-BLAST according to the sequences provided in the
paper6. Unlike for influenza, no empirical titer threshold has been
reported as being able to classify the antigenic similarity or var-
iance for DENV cases. According to the statistics of the available
data6, the titer value for over 90% of the self-reactive pairs was
over 20. Thus, three different values of 15, 20, and 40 were ten-
tatively chosen as classification thresholds for further testing.
Accordingly, the classification results of CE-BLAST achieved
AUC values of 0.857, 0.894, and 0.899, respectively, of the
1072 strain pairs.

Next, the antigenic grouping results of CE-BLAST were
compared with that from the classical sequence similarity and
structure similarity, based on experimental serological topology.
Figure 4a, b shows the serological topology of experimental
grouping between DENV strains by the multidimensional scaling
(MDS) method18 after data cleaning and normalization (Meth-
ods). It could be observed that serotype 1 clusters closely with
serotype 4, whereas serotype 2 clusters the farthest from the
remainder. In Fig. 4c of the CE-BLAST results, the four serotypes
of DENV could be correctly predicted and clustered. In
comparison to grouping topology, serotype 1 was first clustered
with serotype 4, whereas serotype 2 is the farthest from the
remaining strains, which completely matches with the experi-
mental topology (Fig. 4a, b). However, in sequence-based
clustering of Fig. 4d, serotype 1 was first clustered with serotype
3, followed by serotype 2, and last with serotype 4, which
disagrees with the experimental results. Neither could the
structure method achieve the correct topology for DENV
subtypes, as displayed in Fig. 4e.

In addition to inter-subtypic DENV, CE-BLAST also yields
better prediction for intra-subtypic pathogens than sequence-
based or structure-based methods. Taking serotype 1 as an
example, strain DENV1/Vietnam/2008-BID-V1937 (DENV1-
V1937, marked with a star) in Fig. 4c was first clustered with
DENV1/Thailand/1964/16007 (DENV1-T16007, marked with a
dot) and then with DENV1/Myanmar/2005/61117 (DENV-
M61117, marked with a cross), followed by others. This
topological structure indicated that the antigenicity of DENV1-
V1937 was closest to that of DENV1-T16007, followed by
DENV1-M61117. Our prediction is strongly corroborated by
experimental results from either 1 month or 3 month post-
infection sera. The titer value of DENV1-V1937 vs. DENV1-
T16007 is the highest among all pairs between DENV1-V1937
and the 47 tested strains, followed by DENV1-M61117 with the
second highest titer values, indicating the close antigenicity
between DENV1-V1937 and DENV1-T16007 (Supplementary
Data 1). In contrast, neither the sequence-based nor the
structure-based methods could suggest the best serological
relationship within DENV subtypes, as being displayed in Fig. 4d,
e. Therefore, the CE-BLAST model appears to give the best
inference of serological similarity for DENV subtypes, compared
to the classical sequence- or structure-based methods.

Capturing the cross-reactive epitopes between DENV and
ZIKV. The obtained results indicted the unique ability of CE-
BLAST to predict the antigenic similarity for intra- and inter-
subtypes of new pathogens. Next, CE-BLAST was tested across
different viruses to detect the potential cross-reactivity between
the latest arising pathogen of ZIKV and the available pathogen of
DENV. ZIKV is a member of the Flavivirus family, which recently
emerged from Brazil and quickly became a significant public
health concern. Evidence shows that ZIKV infections may lead to
neurological complications such as Guillain–Barré syndrome in
adults20 and micocephaly in newborns1. Several reports

discovered that the antibodies isolated from patients with dengue
had the potential to cross-react with ZIKV21,22. As the main
target of neutralizing antibodies, the E protein was reported to
share high structural similarity with a root-mean-square devia-
tion (RMSD) of 1.1 Å and overall sequence identity of 53.9%
between ZIKV and DENV23.

To predict the potential cross-reactive epitopes between ZIKV
and different DENV subtypes, four representative E proteins were
randomly sampled from our dataset for each DENV subtypes, as
well as for ZIKV. For the convenience of computer screening,
round patches of the viruses were collected for each residue on
the protein surface after structure modeling of E monomers and
dimers, respectively (Methods). Then, the surface patches of
ZIKV were compared with the corresponding patches in DENV
subtypes through CE-BLAST. Potential cross-reactive patches
(CRPs) were marked when their similarity scores rose above a
certain threshold. The frequency of CRP labeled by the center
residue was mapped onto a heat map resulting from binary
comparison between 4 ZIKV and 4 DENV structures, as shown in
Fig. 5a–c, with different rows representing DENV subtypes.
Additional results can be found in Supplementary Figs. 3 and 4.
Although the in silico cross-reactivity frequency could vary
among different subtypes of DENV, strongly consistent CRPs in
domain II and additionally weak CRPs in domain I could be
detected across DENV subtypes (Fig. 5c). Our prediction is
supported by the experimental results from a study by Stettler
et al. on testing the reactivity ability of domain I/II and domain
III in the E protein monomer22.

It is noted that the true epitope is often irregularly shaped,
whereas the above circular surface patch is artificially over-
simplified for convenient screening purposes. The same cross-
reactive epitope (CRE) residue may be contained by different
artificial patches, and particular artificial patches covering
sufficient CRE residues are more likely to constitute the CRPs.
Thus, the overlapping of such CRPs likely indicates the location
of true epitopes. Subsequently, individual residues in each in
silico CRP of a given subtype are first mapped onto the 3D
surface of the E antigen. The concentrated areas above the
average are shown in turquoise in Fig. 5d–g, hinting at the
potential CRE between ZIKV and DENV subtypes, respectively.
Subsequent overlapping of subtypic CREs suggested the turquoise
region in Fig. 5h as the potential CRE of ZIKA virus across
DENV subtypes

A similar strategy was applied to E protein dimer structures.
The computed CRE across DENV subtypes was strongly hinted
in domain II, albeit only slightly in domains I and III from the
opposite chain in the dimer structure (Supplementary Fig. 5). The
entire CRE predicted for the E dimer involves 14 surface residues,
as labeled in Fig. 5i. Notably, the computed CRE is highly
overlapping with results from the crystallization work of
immune-complexes by Barba-Spaeth et al.21. In particular, 71%
of our computed CRA residues are located in the binding
interface derived from the structure complex between the
antibody and the E protein dimer (Fig. 5j), with 45% of the
important residues suggested by Barba-Spaeth et al. included in
our prediction (Fig. 5k).

Discussion
Predicting the cross reactivity for new pathogens is highly chal-
lenging, particularly when the experimental data is still insuffi-
cient. In this study, we designed a unique model to achieve such
prediction by comparing the conformational epitopes of different
antigens. Comprehensive validations confirmed the high and
stable performance of CE-BLAST. The explanation for the success
of CE-BLAST in sensitively detecting the antigenic change lies in
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the design of the algorithm. Firstly, the 3D residual layout dif-
ference in the whole antigen structure caused by mutations can be
recorded by different rotating planes of spin-images of each
epitope residue. Similarly, the physicochemical change of the
microenvironment caused by the mutation in whole antigen can
also be described through shell models of each epitope residue.
Thus, for a pair of antigen structures with only one residual
difference in the surface epitope, the coordinate displacement
derived from classical structure alignment might mainly focus on
the local mutated site, and therefore is usually minor. Conversely,
in the CE-BLAST model, the fingerprints of all the non-mutated
epitope residues will also change accordingly. Coupled with the
substantial penalty from the BLOSUM matrix, the sensitivity to
measure the overall difference is thereby largely increased in CE-
BLAST.

Furthermore, our model enables local search of the most
similar subareas between epitopes. As our similarity score is
normalized by self-size, the score of epitope A querying against B
may be different from that of B against A, if they have different
sizes. Therefore, we tested reciprocally in the case of ZIKV and
DENV. A general workflow was also proposed for cross virus
reactivation by modeling the representative antigen structures.
Surface patches are artificially rendered as circles for simple cal-
culation when the shape of the real epitope is totally unknown.
Highly cross-reactive patches often suggest the inclusion of more
cross-reactive epitope residues. After overlapping the individual
residues from cross-reactive patches, the subtype-specific and
subtype-common CREs can be suggested.

Despite the generality, we also found the limitation of our
models. As CE-BLAST calculates the similarity based on antigen
structures, incomplete structures will reduce its performance. In
addition, heavy post-translational modified structures may also
influence the accuracy, such as in the case of the gp120 antigen of
HIV. To summarize, we designed a new algorithm for the pos-
sible inference of antigenicity similarity, particularly for newly
emerged pathogens. CE-BLAST may potentially be useful for the
following applications: (1) inferring the relative antigenic distance
between the mutated antigens, (2) predicting serological classifi-
cation for pathogen subtypes, and (3) suggesting the potential
cross-reactivity across viruses. Subsequent improvements will be
further elaborated on post-translational modification (PTM)
antigens, parallel computing, and refined models that are tailor-
made for specific proteins.

Methods
Data source. Hemagglutinin data of influenza viruses: HA1 sequences were col-
lected from international databases and reports (Supplementary Note 2). A total of
14,891 HA1 sequences longer than 327 amino acids were retained for influenza A/
H3N2 and 16,672 HA1 sequences longer than 325 amino acids were retained for A/
H1N1. Based on a sequence identity of 99%, 1725 and 1284 unique HA clusters
were formed for A/H3N2 and A/H1N1, respectively. Representative structures
were built for each cluster with randomly selected sequences within the cluster via
homology modeling (Modeller 9.11)24.

The HI assay values were obtained for influenza A/H3N2 from the reports of
international organizations along with published papers (Supplementary Note 2).
For strain a and strain b HA sequences, the antigenic distance Dabð Þ was calculated
only when the four individual HI values (Haa , Hab , Hbb , Hba) were available. In this
way, 3867 Dab values for non-redundant HA pairs were derived from 288 unique
HA sequences, covering 3539 strain pairs from 1968 to 2013, as different HA
sequences were found under the same strain name. The dominant classification of
each pairs could be detected following the protocol in Supplementary Note 3.
Among the non-redundant HA pairs, 2286 were experimentally confirmed as
immune-escaping according to HI results, whereas 1581 were defined as
antigenically similar.

We then split the data according to different time periods to simulate the
prediction ability of each algorithm. In each simulated year (X), the selected
supervised methods were trained by data collected from 1968 to X; and the
remainder were used to testing data to evaluate the prediction ability. In this study,
eight different time periods were selected (X= 1972, 1977, 1982, 1987, 1992, 1997,
2002, and 2007) and tested respectively.

Envelope protein data of dengue and zika viruses: E protein sequences were
collected from the virus variation database of NCBI, with host set as human. A total
of 4081 E protein sequences longer than 493 amino acids were retained for DENV
1–4 and 441 E protein sequences longer than 505 amino acids were retained for
ZIKV. Based on a sequence identity of 100%, 1143 and 68 unique E protein clusters
were formed for DENV and ZIKV, respectively. Representative structures were
built for each cluster with randomly selected sequences within the cluster via
homology modeling (Modeller 9.11)24.

Epitope structure: A total of 421 PDB IDs that included 559 epitope structures
were identified from the PDB25 database, with key words including antibody,
antigen, Fab, Fv, Fc, IgG, and immu*, with a resolution better than 3.0 Å and with a
protein antigen length of more than 50 residues. For each PDB complex, epitope
residues were determined by the nearest atom distance to antibody residues (�4.0
Å). Finally, 559 epitope structures were defined as known conformational epitopes
database in CE-BLAST.

Algorithms. To align the two epitope structures, CE-BLAST first identifies the seed
residue pairs in different subareas between the two structures. Subsequently, the
alignment starts from the seed and gradually extends to the neighboring area to
match the similar residue pairs. Then, the similarity score can be calculated
according to the aligned epitopes. For each pair of queried epitope (A) and target
epitope (B), the overall steps of the algorithm will be:

Step 1: Identify the seed pairs between A and B via epitope fingerprints:
Use the spin-image system to generate structural fingerprints for each epitope

residue in epitopes A and B (see Structural fingerprint generation via the “spin-
image” system);

Add the physicochemical fingerprint (see Physicochemical fingerprint in the
shell layers) to the structural fingerprint for each epitope residue.

Identify the seed pairs based on the epitope fingerprints.
Step 2: Use the “seed grow” strategy to find the most similar subclusters in

epitopes A and B (see Epitope alignment based on the “Seed grow” strategy).
Step 3: Calculate the overall similarity for the epitopes (see Similarity score of

the aligned epitopes).

Identifying the seed pairs. The seed residue pairs are those in the similar
neighboring environments, in terms of both residue layout and physicochemical
properties. A set of fingerprints was designed to describe the local environment for
each residue in an epitope.

Structural fingerprint generation via the “spin-image” system: The spin-image
system was initially designed to represent 3D objects for efficiently solving the
object recognition and reconstruction problems. The spin-image system aims to
project the neighboring residue layout to a two-dimensional (2D) array by rotating
the dynamic plane of each epitope residue26. An input epitope structure will be
described by the collection of 2D images, defined as spin-images. Each epitope
residue is finally recorded as a unique image of a 2D array describing the local
residue layout around the target residue. In this manner, an epitope surface can be
represented by a group of spin images.

Each epitope residue ri is simplified as a point Pi by its alpha carbon atom, Cα.
Then, the geometric center C of the whole epitope is calculated by averaging the 3D
coordinates of all the epitope residues. The center C is set as the origin of the
coordinate system. The vector CP

�!
is set as the rotating axis of the dynamic plane.

Along with a fixed-size rotating plane rotating around CP
�!

, all the surface residues
in an epitope can be projected onto a certain position in the plane. This plane can
be divided into a 2D grid by appropriate horizontal and vertical pixels
(Supplementary Fig. 6). Different plane sizes and grid resolutions were tested. An
optimized plane size and grid resolution were selected (Supplementary Fig. 7 and
Supplementary Note 4).

Physicochemical fingerprint in the shell layers: As the physicochemical
properties of hydrophobic interactions, hydrogen-bond and electrostatic
interactions were reported to play essential roles in the specific binding of an
antigen and antibody27,28, we presented a shell model to add these physicochemical
properties at different layers around the target residue P. By means of the shell
structure, the hydrophobicity, hydrogen bonding, and electrostatic interactions29 of
the neighboring residues were summarized in the shell layers according to the
distance of the neighboring residue and the target residue P (Supplementary Fig. 8).
After optimization, layers of shells within 20 Å of P were generated at a step size
of 2 Å.

Finally, seeding residue pairs could be identified between two epitope surfaces
based on the residue fingerprints of the structural environment and
physicochemical properties.

Epitope alignment based on the “seed row” strategy. Step 1: Pearson corre-
lation coefficients are calculated between each residue pair between epitope A and
B, based on the residue fingerprints. The most similar residue pair with the highest
Pearson coefficient will be taken as “seed 1”.

Step 2: Within a defined distance to “seed 1” (seeding distance), all the
neighboring residues are compared between the two epitopes via step 1 to match
additional similar pairs with similar environments. Each residue is allowed to
appear in only one residue pair.
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Step 3: Continue comparing until all the neighboring residues of “seed 1” are
screened or the Pearson correlation coefficient drops to a certain level (<0.5).

Step 4: Outside the seeding distance of seed 1, repeat from step 1 to start a new
round of seed identification until all the epitope residues are screened or the
Pearson correlation coefficient drops below 0.5.

Until this point, two epitopes were aligned by a group of residue pairs with
similar local environment and physicochemical properties. For the highly different
epitopes with no similar residue pairs of Pearson correlation coefficients above 0.5,
the alignments will still be made according to the ranking of the Pearson
correlation coefficients.

Similarity score of the aligned epitopes. The similarity score is designed to cover
three important measurements: the number of the matched residue pairs ðRPABÞ,
the environmental similarity ESABð Þ, and the evolutionarily distance as denoted by
the residue-transition score ðRTABÞ. Then, a linear model is adopted to integrate
the above values into a Raw Score ðRSABÞ, as shown by formula (1):

RPAB ¼ n

ESAB ¼ Pn
1
Pkili

RTAB ¼ Pn
1
BLOSUM62 ki; lið Þ

RSAB ¼ α � RPAB þ β � ESAB þ γ � RTAB

8>>>>>>><
>>>>>>>:

ð1Þ

where, RPAB indicates the number of the matched residue pairs between epitope A
and B; ESAB is calculated by accumulating the Pearson correlation coefficients
Pki liof all the matched residue pairs ki; lið Þderived from fingerprint comparison;
and RTAB is equal to the summarized value in the BLOSUM62 matrix for the two
matched residues. The α; β; γ values are designed to adjust the magnitude of the
unbalanced score, and set as 1, 10, 1, respectively.

Finally, the raw score of similarity ðRSABÞ is normalized by the self-query score
into a range of (0~1] to remove the size bias of different epitopes. For a query
epitope of A, the final similarity score SSABð Þ to a targeted B epitope can be
calculated as shown below:

SSAB ¼ RSAB
RSAA

ð2Þ

where, the similarity score SSAB is the normalized score of target B against query A.
Thus, the score of SSAB and SSBA may be different.

Application of CE-BLAST to different pathogens. Influenza: As the mutated HA
sequences of influenza are highly similar, the epitope alignment can be derived
from the sequence alignment. Furthermore, the property of N-glycosylation sites
are added into the shell structures of the available physicochemical properties. The
numbers of potential N-glycosylation sites are counted for each layer of shell. The
N-glycosylation sites are defined by sequons of Asn-X-Ser/Thr, where X represents
any amino acid apart from proline17. For inter-pathogen cases such as influenza
HA protein, the cutoff of SSAB is defined as 0.9, according to the optimal point in
the ROC curve. Then, the theoretical antigenicity distance TDabð Þ is translated and
normalized as formula 3, where ϑ0 ¼ 1; ϑð1�cutoffÞ ¼ 4.

TDab¼ϑ
ð1�SSABÞ ð3Þ

Dengue virus E protein: To generate the complete data for antigenic mapping, 19
tested strains with undone (empty value) in each line were removed from Table S3,
described by Leah et al.6. For those with antisera values labeled as <10, we arbi-
trarily set a value of 5 to simplify the calculation. A total of 28 tested strains
remained with antisera values for each. Then, for the each line of the tested strain,
titer values were normalized within 0 to 1, by setting the highest antisera value as 1
(Supplementary Data 1). Finally, antigenic mapping was performed by ordinal
MDS according to the normalized titers.

Potential cross-reactive epitope scanning between DENV and ZIKV: The E
protein epitope scanning between DENV and ZIKV contains three steps. First,
surface areas of the E protein were identified. Here, the trimer structure of the
dengue virus (PDB: 3j27) was selected as a template. The accessible residues were
defined as those amino acids on chain C with area solvent accessible surface (ASA)
value over 1 Å2, the ASA values were calculated using Naccess30. Then, the surface
residues were artificially selected among those accessible residues, as shown in
Supplementary Fig. 9.

Secondly, all the surface patches were identified. For each residue R as center, all
the surface residues within its neighborhood with certain threshold were defined as
its surface patch. After scanning all the residues of E protein, different surface
patches could be derived.

Finally, the CE-BLAST score of each corresponding surface patch from DENV
and ZIKV was calculated. The two surface patches with CE-BLAST scores above
the threshold were defined as the potential CRPs. A total of 20 E protein structures
including four for ZIKV and 16 for DENV (4 for each serotype) were used in this
study; the corresponding strains with GenBank ID are given in Supplementary
Table 7.

Experimental validation of influenza H3 can be found Supplementary Note 5.

Code availability. Main algorithms were integrated into CE-BLAST web server
and can be accessed at http://badd.tongji.edu.cn/ce_blast/ or http://bidd2.nus.edu.
sg/czw/ce_blast/. Other code related with this manuscript is available from authors
on request.

Data availability. In this paper, the HI data and the corresponding strain names
used in section High and robust performance on historical HI data of influenza H3
were collected from reports of international organizations and publications as
Supplementary Note 2 described. Artificially consolidated dataset can be found in
Supplementary Data 2, and sequences were summarized in Supplementary Data 3.
The sequence data used in section Reliable prediction for a new influenza H3
vaccine were listed in Supplementary Table 1, sequence comparison of Con H3 and
reference strains can be found in Supplementary Fig. 2. Serum data of DENV
viruses used in section Correct prediction of serological topology for DENV sub-
types were collected from Table S3 of Katzelnick’s work6, and normalized serum
data used in this section can be found in Supplementary Data 1. Strain ID of DENV
and ZIKV used in section Successful identification of cross-reactive epitopes
between DENV and ZIKV were listed in Supplementary Table 7.
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