12 research outputs found

    Alveolar macrophages and Toll-like receptor 4 mediate ventilated lung ischemia reperfusion injury in mice.

    Get PDF
    BackgroundIschemia-reperfusion (I-R) injury is a sterile inflammatory process that is commonly associated with diverse clinical situations such as hemorrhage followed by resuscitation, transient embolic events, and organ transplantation. I-R injury can induce lung dysfunction whether the I-R occurs in the lung or in a remote organ. Recently, evidence has emerged that receptors and pathways of the innate immune system are involved in recognizing sterile inflammation and overlap considerably with those involved in the recognition of and response to pathogens.MethodsThe authors used a mouse surgical model of transient unilateral left pulmonary artery occlusion without bronchial involvement to create ventilated lung I-R injury. In addition, they mimicked nutritional I-R injury in vitro by transiently depriving cells of all nutrients.ResultsCompared with sham-operated mice, mice subjected to ventilated lung I-R injury had up-regulated lung expression of inflammatory mediator messenger RNA for interleukin-1β, interleukin-6, and chemokine (C-X-C motif) ligand-1 and -2, paralleled by histologic evidence of lung neutrophil recruitment and increased plasma concentrations of interleukin-1β, interleukin-6, and high-mobility group protein B1 proteins. This inflammatory response to I-R required toll-like receptor-4 (TLR4). In addition, the authors demonstrated in vitro cooperativity and cross-talk between human macrophages and endothelial cells, resulting in augmented inflammatory responses to I-R. Remarkably, the authors found that selective depletion of alveolar macrophages rendered mice resistant to ventilated lung I-R injury.ConclusionsThe data reveal that alveolar macrophages and the pattern recognition receptor toll-like receptor-4 are involved in the generation of the early inflammatory response to lung I-R injury

    The Dynamic Duo: Niche/Stem Cell Interdependency

    Get PDF
    Most tissues in our bodies undergo constant cellular turnover. This process requires a dynamic balance between cell production and elimination. Stem cells have been shown in many of these tissues to be the major source of new cells. However, despite the tremendous advances made, it still remains unclear how stem cell behavior and activity are regulated in vivo. Furthermore, we lack basic understanding for the mechanisms that coordinate niche/stem cell interactions to maintain normal tissue homeostasis. Our lab has established a novel imaging approach in live mice using the skin as a model system to investigate these fundamental processes in both physiological and pathological settings such as cancer, with the goal of understanding how tissues successfully orchestrate tissue regeneration throughout the lifetime of an organism

    Alveolar Macrophages and Toll-like Receptor 4 Mediate Ventilated Lung Ischemia Reperfusion Injury in Mice

    No full text
    BACKGROUND: Ischemia reperfusion (I/R) injury involves sterile inflammation and is commonly associated with diverse clinical situations such as hemorrhage followed by resuscitation, transient embolic events, and organ transplantation. I/R injury can induce lung dysfunction whether the I/R occurs in the lung itself or in a remote organ. Recently, evidence has emerged that receptors and pathways of the innate immune system are involved in recognizing sterile inflammation and overlap considerably with those involved in recognition and response to pathogens. METHODS: We used a mouse surgical model of transient unilateral left pulmonary artery occlusion without bronchial involvement to create ventilated lung I/R injury. Additionally, we mimicked nutritional I/R injury in vitro by transiently depriving cells of all nutrients. RESULTS: Compared with sham-operated mice, mice subjected to ventilated lung I/R injury had upregulated lung expression of inflammatory mediator messenger RNA for IL-1β, IL-6, and CXCL1 and 2, paralleled by histologic evidence of lung neutrophil recruitment, and increased plasma levels of IL-1β, IL-6 and HMGB1 proteins. This inflammatory response to I/R required toll-like receptor-4. Furthermore, we demonstrated in vitro cooperativity and cross-talk between macrophages and endothelial cells, resulting in augmented inflammatory responses to I/R. Remarkably, we found that selective depletion of alveolar macrophages rendered mice resistant to ventilated lung I/R injury. CONCLUSIONS: Our data reveal that alveolar macrophages and the pattern recognition receptor, toll-like receptor-4 are required for the generation of the early inflammatory response to lung I/R injury

    Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool

    No full text
    Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression). In contrast to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration. Here we show by intravital microscopy in live mice that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbours. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through transforming growth factor (TGF)-β activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool, as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviours and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis

    Niche induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool

    No full text
    Summary Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression)1,2. Contrary to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration3. Here we show by intravital microscopy in live mice4–6 that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbors. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through TGFβ activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviors and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis
    corecore