768 research outputs found
The Effect of Synonym Relationship Upon the Acquisition of Multi-Dimensional Vocabulary Knowledge
Based on Nation’s framework of multi-dimensional vocabulary knowledge, this study designed a multi-dimensional vocabulary knowledge test and examined the effect of word pair and sentence with and without synonyms on the acquisition of the multi-dimensional vocabulary knowledge of target words with respect to orthography, meaning and form, grammatical function syntagmatic association and paradigmatic association. Experiment results indicated that the participants obtained significant more scores for the target words with known high frequency synonyms than for those without known synonyms in terms of the receptive vocabulary knowledge of syntagmatic association and orthography and the productive vocabulary knowledge of paradigmatic association. Hence it can be concluded that the known synonyms might be conducive to the acquisition of the unknown synonyms. Implications of the results were discussed
Auto-Encoding Scene Graphs for Image Captioning
We propose Scene Graph Auto-Encoder (SGAE) that incorporates the language
inductive bias into the encoder-decoder image captioning framework for more
human-like captions. Intuitively, we humans use the inductive bias to compose
collocations and contextual inference in discourse. For example, when we see
the relation `person on bike', it is natural to replace `on' with `ride' and
infer `person riding bike on a road' even the `road' is not evident. Therefore,
exploiting such bias as a language prior is expected to help the conventional
encoder-decoder models less likely overfit to the dataset bias and focus on
reasoning. Specifically, we use the scene graph --- a directed graph
() where an object node is connected by adjective nodes and
relationship nodes --- to represent the complex structural layout of both image
() and sentence (). In the textual domain, we use
SGAE to learn a dictionary () that helps to reconstruct sentences
in the pipeline, where encodes the desired language prior;
in the vision-language domain, we use the shared to guide the
encoder-decoder in the pipeline. Thanks to the scene graph
representation and shared dictionary, the inductive bias is transferred across
domains in principle. We validate the effectiveness of SGAE on the challenging
MS-COCO image captioning benchmark, e.g., our SGAE-based single-model achieves
a new state-of-the-art CIDEr-D on the Karpathy split, and a competitive
CIDEr-D (c40) on the official server even compared to other ensemble
models
Toivon johtaminen esimiesten kokemana
Tutkimuksen tavoitteena on tarkastella työelämää positiivisesta ja tulevaisuusorientoituneesta toivon näkökulmasta. Teoreettisena viitekehyksenä on C. R. Snyderin teoria toivosta tavoitteiden asettamisena ja tavoittelemisena. Puolistrukturoidulla teemahaastattelulla hankitun aineiston analyysissä sovellettiin fenomenologisen psykologian erityistieteelle kehitettyjä menetelmiä. Haastateltujen esimiesten ainutkertaisia kokemuksia toivosta analysoidaan suhteessa heihin itseensä, heidän työhönsä sekä työyhteisöihinsä. Toivon koettuna rakenteena tarkastellaan toiminnallisuutta, tavoitteellisuutta ja myönteisyyttä. Tutkimuksen empiirisen osan tulosten perusteella toivoa luova johtaminen on välittävässä hengessä myönteisen ja luottamuksellisen ilmapiirin luomista. Toivon johtamista tarkastellaan sekä yksilö- että ryhmätasolla
- …