57 research outputs found

    Demystifying Privacy Policy of Third-Party Libraries in Mobile Apps

    Full text link
    The privacy of personal information has received significant attention in mobile software. Although previous researchers have designed some methods to identify the conflict between app behavior and privacy policies, little is known about investigating regulation requirements for third-party libraries (TPLs). The regulators enacted multiple regulations to regulate the usage of personal information for TPLs (e.g., the "California Consumer Privacy Act" requires businesses clearly notify consumers if they share consumers' data with third parties or not). However, it remains challenging to analyze the legality of TPLs due to three reasons: 1) TPLs are mainly published on public repositoriesinstead of app market (e.g., Google play). The public repositories do not perform privacy compliance analysis for each TPL. 2) TPLs only provide independent functions or function sequences. They cannot run independently, which limits the application of performing dynamic analysis. 3) Since not all the functions of TPLs are related to user privacy, we must locate the functions of TPLs that access/process personal information before performing privacy compliance analysis. To overcome the above challenges, in this paper, we propose an automated system named ATPChecker to analyze whether the Android TPLs meet privacy-related regulations or not. Our findings remind developers to be mindful of TPL usage when developing apps or writing privacy policies to avoid violating regulation

    [In Press] Transient model and parameters matching of a segmented solar thermoelectric system

    No full text
    Solar thermoelectric generators (STEGs) with segmented thermoelectric (TE) materials have higher energy conversion efficiency than traditional STEGs with uniform TE materials. This paper constructs a transient model to investigate the dynamic heat conduction characters of the segmented STEGs. The solutions of temperature field and energy conversion efficiency are obtained. The parameters matching problem of segmented TE materials is also studied based on the developed transient model. Numerical results show that there exists an optimum parameter matching at which the efficiency could attain its local maximum value. In addition, tuning and matching segmented TE material parameters could enhance the efficiency and might increase thermal stress simultaneously. Therefore, in this paper, an optimization purpose function is defined to analyze the effect of parameters matching on both performance and structural safety. Neural network (NN) is also used to find segmented STEGs with high efficiency and low thermal stress. This work may offer useful information for the optimal design of real segmented STEGs and promote their practical applications

    Study on cyclic crosslinked polyphosphazene microspheres and its adsorption behavior for uranium (VI)

    No full text
    Poly (cyclotriphosphazene-co-4,4 '- diaminodiphenylsulfone) (PZD) microspheres were synthesi zed by precipitation polymerization of Hexachlorocyclotriphosphazene (HCCP) and polyfunctional organic monomers. The products were characterized by FTIR, SEM-EDS, XPS and bet. The adsorption behavior of PZD microspheres for uranium (VI) in aqueous solution and the influence of adsorption behavior were disc ussed. The results show that the PZD microspheres have a certain adsorption capacity for uranium (VI) in a queous solution. When pH = 3.5, adsorption time is 6h, solid-liquid ratio is 2.0g • L-1 and initial concentration of uranium (VI) is 30mg • L-1, the adsorption rate of uranium reaches the maximum

    The Impact of Eclipsing GNSS Satellites on the Precise Point Positioning

    No full text
    When satellites enter into the noon maneuver or the shadow crossing regimes, the actual attitudes will depart from their nominal values. If improper attitude models are used, the induced-errors due to the wind-up effect and satellite antenna PCO (Phase Center Offset) will deteriorate the positioning accuracy. Because different generations of satellites adopt different attitude control models, the influences on the positioning performances deserve further study. Consequently, the impact of three eclipsing strategies on the single-system and multi-GNSS (Global Navigation Satellite System) Precise Point Positioning (PPP) are analyzed. According to the results of the eclipsing monitor, 65 globally distributed MGEX (Multi-GNSS EXperiment) stations for 31-day period in July 2017 are selected to perform G/R/E/C/GR/GREC PPP in both static and kinematic modes. The results show that the influences of non-nominal attitudes are related to the magnitude of the PCO values, maximum yaw angle differences, the duration of maneuver, the value of the sun angle and the satellite geometric strength. For single-system, using modeled attitudes rather than the nominal ones will greatly improve the positioning accuracy of GLONASS-only and BDS-only PPP while slightly contributions to the GPS-only and GALILEO-only PPP. Deleting the eclipsing satellites may sometimes induce a longer convergence time and a worse solution due to the poor satellite geometry, especially for GLONASS kinematic PPP when stations are located in the low latitude and BDS kinematic PPP. When multi-GNSS data are available, especially four navigation systems, the accuracy improvements of using the modeled attitudes or deleting eclipsing satellites are non-significant

    Thermoelectric and stress fields for a cracked thermoelectric media based on the electric field saturation model

    No full text
    This paper considers a crack that is vertical to the applied electric flux and energy flux loads in thermoelectric materials. The paper proposes the idea of electrical nonlinearity at the crack tip and develops a strip saturation model with electric field reaching a saturation limit in front of the crack. The energy flux intensity factor, thermal flux intensity factor and stress intensity factor are obtained. They are found to depend on the applied electric flux and applied energy flux loads. However, when electrical nonlinearity at the crack tip is not considered, they are only dependent on applied energy flux load. It is interesting to see that these intensity factors at electrically yielded crack tip are independent of the strength and size of electrical saturation. The result of the thermal stress intensity factor of this paper is very general and easy to use in the strength evaluation of thermoelectric materials and their devices
    corecore