9 research outputs found
The dimorphic diaspore model Aethionema arabicum (Brassicaceae):Distinct molecular and morphological control of responses to parental and germination temperatures
Plants in habitats with unpredictable conditions are often characterized by diversifying their bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as seed and pericarp hormone contents identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting ABA sensitivity. This involved expression of morph-specific transcription factors, hypoxia response and cell wall-remodeling genes, as well as altered abscisic acid (ABA) metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures
MADS-box genes are involved in floral development and evolution.
MADS-box genes encode transcription factors in all eukaryotic organisms thus far studied. Plant MADS-box proteins contain a DNA-binding (M), an intervening (I), a Keratin-like (K) and a C-terminal C-domain, thus plant MADS-box proteins are of the MIKC type. In higher plants most of the well-characterized genes are involved in floral development. They control the transition from vegetative to generative growth and determine inflorescence meristem identity. They specify floral organ identity as outlined in the ABC model of floral development. Moreover, in Antirrhinum majus the MADS-box gene products DEF/GLO and PLE control cell proliferation in the developing flower bud. In this species the DEF/GLO and the SQUA proteins form a ternary complex which determines the overall "Bauplan" of the flower. Phylogenetic reconstructions of MADS-box sequences obtained from ferns, gymnosperms and higher eudicots reveal that, although ferns possess already MIKC type genes, these are not orthologous to the well characterized MADS-box genes from gymnosperms or angiosperms. Putative orthologs of floral homeotic B- and C-function genes have been identified in different gymnosperms suggesting that these genes evolved some 300-400 million years ago. Both gymnosperms and angiosperms also contain a hitherto unknown sister clade of the B-genes, which we termed Bsister. A novel hypothesis will be described suggesting that B and Bsister might be involved in sex determination of male and female reproductive organs, respectively