85 research outputs found

    Landau Transport equations in slave-boson mean-field theory of t-J model

    Full text link
    In this paper we generalize slave-boson mean-field theory for t−Jt-J model to the time-dependent regime, and derive transport equations for t−Jt-J model, both in the normal and superconducting states. By eliminating the boson and constraint fields exactly in the equations of motion we obtain a set of transport equations for fermions which have the same form as Landau transport equations for normal Fermi liquid and Fermi liquid superconductor, respectively with all Landau parameters explicity given. Our theory can be viewed as a refined version of U(1) Gauge theory where all lattice effects are retained and strong correlation effects are reflected as strong Fermi-liquid interactions in the transport equation. Some experimental consequences are discussed.Comment: 19 page

    Nucleocapsid Protein as Early Diagnostic Marker for SARS

    Get PDF
    Serum samples from 317 patients with patients with severe acute respiratory syndrome (SARS) were tested for the nucleocapsid (N) protein of SARS-associated coronavirus, with sensitivities of 94% and 78% for the first 5 days and 6–10 days after onset, respectively. The specificity was 99.9%. N protein can be used as an early diagnostic maker for SARS

    Cosmological background solutions and cosmological backreactions

    Full text link
    The cosmological backreaction proposal, which attempts to account for observations without a primary dark energy source in the stress-energy tensor, has been developed and discussed by means of different approaches. Here, we focus on the concept of cosmological background solutions in order to develop a framework to study different backreaction proposals.Comment: 14 pages, 5 figures; major changes, replaced to match the version published in General Relativity and Gravitatio

    Towards greater transparency and coherence in funding for sustainable marine fisheries and healthy oceans

    Get PDF
    This final manuscript in the special issue on “Funding for ocean conservation and sustainable fisheries” is the result of a dialogue aimed at connecting lead authors of the special issue manuscripts with relevant policymakers and practitioners. The dialogue took place over the course of a two-day workshop in December 2018, and this “coda” manuscript seeks to distil thinking around a series of key recurring topics raised throughout the workshop. These topics are collected into three broad categories, or “needs”: 1) a need for transparency, 2) a need for coherence, and 3) a need for improved monitoring of project impacts. While the special issue sought to collect new research into the latest trends and developments in the rapidly evolving world of funding for ocean conservation and sustainable fisheries, the insights collected during the workshop have helped to highlight remaining knowledge gaps. Therefore, each of the three “needs” identified within this manuscript is followed by a series of questions that the workshop participants identified as warranting further attention as part of a future research agenda. The crosscutting nature of many of the issues raised as well as the rapid pace of change that characterizes this funding landscape both pointed to a broader need for continued dialogue and study that reaches across the communities of research, policy and practice.S

    Dark energy as a mirage

    Full text link
    Motivated by the observed cosmic matter distribution, we present the following conjecture: due to the formation of voids and opaque structures, the average matter density on the path of the light from the well-observed objects changes from Omega_M ~ 1 in the homogeneous early universe to Omega_M ~ 0 in the clumpy late universe, so that the average expansion rate increases along our line of sight from EdS expansion Ht ~ 2/3 at high redshifts to free expansion Ht ~ 1 at low redshifts. To calculate the modified observable distance-redshift relations, we introduce a generalized Dyer-Roeder method that allows for two crucial physical properties of the universe: inhomogeneities in the expansion rate and the growth of the nonlinear structures. By treating the transition redshift to the void-dominated era as a free parameter, we find a phenomenological fit to the observations from the CMB anisotropy, the position of the baryon oscillation peak, the magnitude-redshift relations of type Ia supernovae, the local Hubble flow and the nucleosynthesis, resulting in a concordant model of the universe with 90% dark matter, 10% baryons, no dark energy, 15 Gyr as the age of the universe and a natural value for the transition redshift z_0=0.35. Unlike a large local void, the model respects the cosmological principle, further offering an explanation for the late onset of the perceived acceleration as a consequence of the forming nonlinear structures. Additional tests, such as quantitative predictions for angular deviations due to an anisotropic void distribution and a theoretical derivation of the model, can vindicate or falsify the interpretation that light propagation in voids is responsible for the perceived acceleration.Comment: 33 pages, 2 figs; v2: minor clarifications, results unchanged; v3: matches the version published in General Relativity and Gravitatio

    Radial asymptotics of Lemaitre-Tolman-Bondi dust models

    Full text link
    We examine the radial asymptotic behavior of spherically symmetric Lemaitre-Tolman-Bondi dust models by looking at their covariant scalars along radial rays, which are spacelike geodesics parametrized by proper length ℓ\ell, orthogonal to the 4-velocity and to the orbits of SO(3). By introducing quasi-local scalars defined as integral functions along the rays, we obtain a complete and covariant representation of the models, leading to an initial value parametrization in which all scalars can be given by scaling laws depending on two metric scale factors and two basic initial value functions. Considering regular "open" LTB models whose space slices allow for a diverging ℓ\ell, we provide the conditions on the radial coordinate so that its asymptotic limit corresponds to the limit as ℓ→∞\ell\to\infty. The "asymptotic state" is then defined as this limit, together with asymptotic series expansion around it, evaluated for all metric functions, covariant scalars (local and quasi-local) and their fluctuations. By looking at different sets of initial conditions, we examine and classify the asymptotic states of parabolic, hyperbolic and open elliptic models admitting a symmetry center. We show that in the radial direction the models can be asymptotic to any one of the following spacetimes: FLRW dust cosmologies with zero or negative spatial curvature, sections of Minkowski flat space (including Milne's space), sections of the Schwarzschild--Kruskal manifold or self--similar dust solutions.Comment: 44 pages (including a long appendix), 3 figures, IOP LaTeX style. Typos corrected and an important reference added. Accepted for publication in General Relativity and Gravitatio

    The Genome of the Netherlands: Design, and project goals

    Get PDF
    Within the Netherlands a national network of biobanks has been established (Biobanking and Biomolecular Research Infrastructure-Netherlands (BBMRI-NL)) as a national node of the European BBMRI. One of the aims of BBMRI-NL is to enrich biobanks with different types of molecular and phenotype data. Here, we describe the Genome of the Netherlands (GoNL), one of the projects within BBMRI-NL. GoNL is a whole-genome-sequencing project in a representative sample consisting of 250 trio-families from all provinces in the Netherlands, which aims to characterize DNA sequence variation in the Dutch population. The parent-offspring trios include adult individuals ranging in age from 19 to 87 years (mean=53 years; SD=16 years) from birth cohorts 1910-1994. Sequencing was done on blood-derived DNA from uncultured cells and accomplished coverage was 14-15x. The family-based design represents a unique resource to assess the frequency of regional variants, accurately reconstruct haplotypes by family-based phasing, characterize short indels and complex structural variants, and establish the rate of de novo mutational events. GoNL will also serve as a reference panel for imputation in the available genome-wide association studies in Dutch and other cohorts to refine association signals and uncover population-specific variants. GoNL will create a catalog of human genetic variation in this sample that is uniquely characterized with respect to micro-geographic location and a wide range of phenotypes. The resource will be made available to the research and medical community to guide the interpretation of sequencing projects. The present paper summarizes the global characteristics of the project

    Crystal Structure of the Hendra Virus Attachment G Glycoprotein Bound to a Potent Cross-Reactive Neutralizing Human Monoclonal Antibody

    Get PDF
    The henipaviruses, represented by Hendra (HeV) and Nipah (NiV) viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb) have been isolated using the HeV-G glycoprotein and a human naĂŻve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4) was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines

    WGS-based telomere length analysis in Dutch family trios implicates stronger maternal inheritance and a role for RRM1 gene

    Get PDF
    Telomere length (TL) regulation is an important factor in ageing, reproduction and cancer development. Genetic, hereditary and environmental factors regulating TL are currently widely investigated, however, their relative contribution to TL variability is still understudied. We have used whole genome sequencing data of 250 family trios from the Genome of the Netherlands project to perform computational measurement of TL and a series of regression and genome-wide association analyses to reveal TL inheritance patterns and associated genetic factors. Our results confirm that TL is a largely heritable trait, primarily with mother’s, and, to a lesser extent, with father’s TL having the strongest influence on the offspring. In this cohort, mother’s, but not father’s age at conception was positively linked to offspring TL. Age-related TL attrition of 40 bp/year had relatively small influence on TL variability. Finally, we have identified TL-associated variations in ribonuclease reductase catalytic subunit M1 (RRM1 gene), which is known to regulate telomere maintenance in yeast. We also highlight the importance of multivariate approach and the limitations of existing tools for the analysis of TL as a polygenic heritable quantitative trait
    • 

    corecore