2 research outputs found

    Finite element analysis of wrinkling membranes

    Get PDF
    The development of a nonlinear numerical algorithm for the analysis of stresses and displacements in partly wrinkled flat membranes, and its implementation on the SAP VII finite-element code are described. A comparison of numerical results with exact solutions of two benchmark problems reveals excellent agreement, with good convergence of the required iterative procedure. An exact solution of a problem involving axisymmetric deformations of a partly wrinkled shallow curved membrane is also reported

    Finite element analysis of wrinkling membranes

    Get PDF
    The finite element analysis of wrinkling membranes was investigated. The determination of stresses and deformations within large partly wrinkled membrane surfaces is a problem of significant technical interest in such areas as conceptual design and analysis of ultra lightweight spacecraft structures. A closed-form solution to an axisymmetric problem involving partial wrinkling of an inflated shallow membrane was obtained. In particular, a membrane in the shape of a sperical annulus was considered. The outer edge of the annulus was assumed to be fixed so that no displacements occur along the outer perimeter. The inner edge is assumed to be clamped to a rigid movable plug. Solutions for the complete stress, strain, and displacement fields under the assumption of inextensional material behavior are presented for the case of pure torsional loads applied to the plug, and for the case of pure axial loads applied to the plug
    corecore