11 research outputs found
Independent component analysis algorithms for non-invasive fetal electrocardiography
The independent component analysis (ICA) based methods are among the most prevalent techniques used for non-invasive fetal electrocardiogram (NI-fECG) processing. Often, these methods are combined with other methods, such adaptive algorithms. However, there are many variants of the ICA methods and it is not clear which one is the most suitable for this task. The goal of this study is to test and objectively evaluate 11 variants of ICA methods combined with an adaptive fast transversal filter (FTF) for the purpose of extracting the NI-fECG. The methods were tested on two datasets, Labour dataset and Pregnancy dataset, which contained real records obtained during clinical practice. The efficiency of the methods was evaluated from the perspective of determining the accuracy of detection of QRS complexes through the parameters of accuracy (ACC), sensitivity (SE), positive predictive value (PPV), and harmonic mean between SE and PPV (F1). The best results were achieved with a combination of FastICA and FTF, which yielded mean values of ACC = 83.72%, SE = 92.13%, PPV = 90.16%, and F1 = 91.14%. Time of calculation was also taken into consideration in the methods. Although FastICA was ranked to be the sixth fastest with its mean computation time of 0.452 s, it had the best ratio of performance and speed. The combination of FastICA and adaptive FTF filter turned out to be very promising. In addition, such device would require signals acquired from the abdominal area only; no need to acquire reference signal from the mother's chest
Nonlinear Adaptive Signal Processing Improves the Diagnostic Quality of Transabdominal Fetal Electrocardiography
The abdominal fetal electrocardiogram (fECG) conveys valuable information that can aid clinicians with the diagnosis and monitoring of a potentially at risk fetus during pregnancy and in childbirth. This chapter primarily focuses on noninvasive (external and indirect) transabdominal fECG monitoring. Even though it is the preferred monitoring method, unlike its classical invasive (internal and direct) counterpart (transvaginal monitoring), it may be contaminated by a variety of undesirable signals that deteriorate its quality and reduce its value in reliable detection of hypoxic conditions in the fetus. A stronger maternal electrocardiogram (the mECG signal) along with technical and biological artifacts constitutes the main interfering signal components that diminish the diagnostic quality of the transabdominal fECG recordings. Currently, transabdominal fECG monitoring relies solely on the determination of the fetus’ pulse or heart rate (FHR) by detecting RR intervals and does not take into account the morphology and duration of the fECG waves (P, QRS, T), intervals, and segments, which collectively convey very useful diagnostic information in adult cardiology. The main reason for the exclusion of these valuable pieces of information in the determination of the fetus’ status from clinical practice is the fact that there are no sufficiently reliable and well-proven techniques for accurate extraction of fECG signals and robust derivation of these informative features. To address this shortcoming in fetal cardiology, we focus on adaptive signal processing methods and pay particular attention to nonlinear approaches that carry great promise in improving the quality of transabdominal fECG monitoring and consequently impacting fetal cardiology in clinical practice. Our investigation and experimental results by using clinical-quality synthetic data generated by our novel fECG signal generator suggest that adaptive neuro-fuzzy inference systems could produce a significant advancement in fetal monitoring during pregnancy and childbirth. The possibility of using a single device to leverage two advanced methods of fetal monitoring, namely noninvasive cardiotocography (CTG) and ST segment analysis (STAN) simultaneously, to detect fetal hypoxic conditions is very promising
The Most Current Solutions using Virtual-Reality-Based Methods in Cardiac Surgery -- A Survey
There is a widespread belief that VR technologies can provide controlled, multi-sensory, interactive 3D stimulus environments that engage patients in interventions and measure, record and motivate required human performance. In order to investigate state-of-the-art and associated occupations we provided a careful review of 6 leading medical and technical bibliometric databases. Despite the apparent popularity of the topic of VR use in cardiac surgery, only 47 articles published between 2002 and 2022 met the inclusion criteria. Based on them VR-based solutions in cardiac surgery are useful both for medical specialists and for the patients themselves. The new lifestyle required from cardiac surgery patients is easier to implement thanks to VR-based educational and motivational tools. However, it is necessary to develop the above-mentioned tools and compare their effectiveness with Augmented Reality (AR). With the aforementioned reasons, interdisciplinary collaboration between scientists, clinicians and engineers is necessary
Non-Adaptive Methods for Fetal ECG Signal Processing: A Review and Appraisal
Fetal electrocardiography is among the most promising methods of modern electronic fetal monitoring. However, before they can be fully deployed in the clinical practice as a gold standard, the challenges associated with the signal quality must be solved. During the last two decades, a great amount of articles dealing with improving the quality of the fetal electrocardiogram signal acquired from the abdominal recordings have been introduced. This article aims to present an extensive literature survey of different non-adaptive signal processing methods applied for fetal electrocardiogram extraction and enhancement. It is limiting that a different non-adaptive method works well for each type of signal, but independent component analysis, principal component analysis and wavelet transforms are the most commonly published methods of signal processing and have good accuracy and speed of algorithms
Pregnancy in the time of COVID-19: towards Fetal monitoring 4.0
Abstract On the outbreak of the global COVID-19 pandemic, high-risk and vulnerable groups in the population were at particular risk of severe disease progression. Pregnant women were one of these groups. The infectious disease endangered not only the physical health of pregnant women, but also their mental well-being. Improving the mental health of pregnant women and reducing their risk of an infectious disease could be achieved by using remote home monitoring solutions. These would allow the health of the mother and fetus to be monitored from the comfort of their home, a reduction in the number of physical visits to the doctor and thereby eliminate the need for the mother to venture into high-risk public places. The most commonly used technique in clinical practice, cardiotocography, suffers from low specificity and requires skilled personnel for the examination. For that and due to the intermittent and active nature of its measurements, it is inappropriate for continuous home monitoring. The pandemic has demonstrated that the future lies in accurate remote monitoring and it is therefore vital to search for an option for fetal monitoring based on state-of-the-art technology that would provide a safe, accurate, and reliable information regarding fetal and maternal health state. In this paper, we thus provide a technical and critical review of the latest literature and on this topic to provide the readers the insights to the applications and future directions in fetal monitoring. We extensively discuss the remaining challenges and obstacles in future research and in developing the fetal monitoring in the new era of Fetal monitoring 4.0, based on the pillars of Healthcare 4.0
Independent component analysis algorithms for non-invasive fetal electrocardiography
The independent component analysis (ICA) based methods are among the most prevalent techniques used for non-invasive fetal electrocardiogram (NI-fECG) processing. Often, these methods are combined with other methods, such adaptive algorithms. However, there are many variants of the ICA methods and it is not clear which one is the most suitable for this task. The goal of this study is to test and objectively evaluate 11 variants of ICA methods combined with an adaptive fast transversal filter (FTF) for the purpose of extracting the NI-fECG. The methods were tested on two datasets, Labour dataset and Pregnancy dataset, which contained real records obtained during clinical practice. The efficiency of the methods was evaluated from the perspective of determining the accuracy of detection of QRS complexes through the parameters of accuracy (ACC), sensitivity (SE), positive predictive value (PPV), and harmonic mean between SE and PPV (F1). The best results were achieved with a combination of FastICA and FTF, which yielded mean values of ACC = 83.72%, SE = 92.13%, PPV = 90.16%, and F1 = 91.14%. Time of calculation was also taken into consideration in the methods. Although FastICA was ranked to be the sixth fastest with its mean computation time of 0.452 s, it had the best ratio of performance and speed. The combination of FastICA and adaptive FTF filter turned out to be very promising. In addition, such device would require signals acquired from the abdominal area only; no need to acquire reference signal from the mother’s chest
Longitudinal analysis of T2 relaxation time variations following radiotherapy for prostate cancer
Aim of this paper is to evaluate short and long-term changes in T2 relaxation times after radiotherapy in patients with low and intermediate risk localized prostate cancer. A total of 24 patients were selected for this retrospective study. Each participant underwent 1.5T magnetic resonance imaging on seven separate occasions: initially after the implantation of gold fiducials, the required step for Cyberknife therapy guidance, followed by MRI scans two weeks post-therapy and monthly thereafter. As part of each MRI scan, the prostate region was manually delineated, and the T2 relaxation times were calculated for quantitative analysis. The T2 relaxation times between individual follow-ups were analyzed using Repeated Measures Analysis of Variance that revealed a significant difference across all measurements (F (6, 120) = 0.611, p << 0.001). A Bonferroni post hoc test revealed significant differences in median T2 values between the baseline and subsequent measurements, particularly between pre-therapy (M0) and two weeks post-therapy (M1), as well as during the monthly interval checks (M2 - M6). Some cases showed a delayed decrease in relaxation times, indicating the prolonged effects of therapy. The changes in T2 values during the course of radiotherapy can help in monitoring radiotherapy response in unconfirmed patients, quantifying the scarring process, and recognizing the therapy failure
Comparative Effectiveness of ICA and PCA in Extraction of Fetal ECG From Abdominal Signals: Toward Non-invasive Fetal Monitoring
Non-adaptive signal processing methods have been successfully applied to extract fetal electrocardiograms (fECGs) from maternal abdominal electrocardiograms (aECGs); and initial tests to evaluate the efficacy of these methods have been carried out by using synthetic data. Nevertheless, performance evaluation of such methods using real data is a much more challenging task and has neither been fully undertaken nor reported in the literature. Therefore, in this investigation, we aimed to compare the effectiveness of two popular non-adaptive methods (the ICA and PCA) to explore the non-invasive (NI) extraction (separation) of fECGs, also known as NI-fECGs from aECGs. The performance of these well-known methods was enhanced by an adaptive algorithm, compensating amplitude difference and time shift between the estimated components. We used real signals compiled in 12 recordings (real01–real12). Five of the recordings were from the publicly available database (PhysioNet-Abdominal and Direct Fetal Electrocardiogram Database), which included data recorded by multiple abdominal electrodes. Seven more recordings were acquired by measurements performed at the Institute of Medical Technology and Equipment, Zabrze, Poland. Therefore, in total we used 60 min of data (i.e., around 88,000 R waves) for our experiments. This dataset covers different gestational ages, fetal positions, fetal positions, maternal body mass indices (BMI), etc. Such a unique heterogeneous dataset of sufficient length combining continuous Fetal Scalp Electrode (FSE) acquired and abdominal ECG recordings allows for robust testing of the applied ICA and PCA methods. The performance of these signal separation methods was then comprehensively evaluated by comparing the fetal Heart Rate (fHR) values determined from the extracted fECGs with those calculated from the fECG signals recorded directly by means of a reference FSE. Additionally, we tested the possibility of non-invasive ST analysis (NI-STAN) by determining the T/QRS ratio. Our results demonstrated that even though these advanced signal processing methods are suitable for the non-invasive estimation and monitoring of the fHR information from maternal aECG signals, their utility for further morphological analysis of the extracted fECG signals remains questionable and warrants further work
Legislative Documents
Also, variously referred to as: Senate bills; Senate documents; Senate legislative documents; legislative documents; and General Court documents