8 research outputs found

    Assessment of Seasonal Variability of Cytochemical Responses to Contaminant Exposure in the Blue Mussel Mytilus edulis (Complex)

    Get PDF
    A selected suite of cytochemical parameters in Mytilus edulis are altered in response to field and laboratory exposure to chemical contaminants. These biomarkers include lysosomal stability, nicotinamide adenine dinucleotide phosphate (NADPH)–ferrihemoprotein reductase activity, liposfuscin deposition, and accumulation of lysosomal and cytoplasmic unsaturated neutral lipid. Normal variations in physiological processes (influenced by exogenous seasonal changes in temperature, salinity, food availability, etc.) may alter the sensitivity of these biomarkers to contaminant exposure. To address this issue, M. edulis (complex) were sampled monthly from a reference nonurban site (Coupeville, Penn Cove) and a polluted urban site (Seacrest, Elliott Bay) in Puget Sound, WA, for a period of 15 months. Physiological measurements including total length, total weight, somatic and mantle weights (an indication of gonadal development and reproductive status), condition index, and the presence or absence of hemic neoplasia (HN, or leukemia) were recorded. Significant differences in lysosomal stability, lysosomal and cytoplasmic unsaturated neutral lipids, lipofuscin deposition, and NADPH–ferrihemoprotein reductase activity in cells of the digestive gland or digestive tubules were generally found in mussels taken throughout the year from Seacrest compared to mussels sampled from Coupeville, consistent with exposure to chemical contaminants. No seasonally influenced suppression of the entire suite of parameters as measures of contaminant exposure was evident. Therefore these biomarkers can be used to evaluate contaminant exposure in mussels throughout the entire year

    Environmental Contaminants and the Prevalence of Hemic Neoplasia (Leukemia) in the Common Mussel (Mytilus edulis Complex) from Puget Sound, Washington, U.S.A

    Get PDF
    The relationship between hemic neoplasia, a blood cell disorder in bivalve molluscs, and chemical contaminants was evaluated in the common mussel (Mytilus eduliscomplex). Hemic neoplasia (HN) is endemic to mussel populations in Puget Sound. The prevalence of hemic neoplasia ranged from 0 to 30% in mussels from nine sites in Puget Sound, Washington. Organic chemical contamination in sediment from these sites range from 0.1 to 64.0 ppm of polycyclic aromatic hydrocarbons (PAHs) and 0.07 to 0.50 ppm chlorinated hydrocarbons. No relationship between the body burden of environmental contaminants and the prevalence of HN in mussels was identified. To evaluate the short-term ability of chemical contaminants to induce HN in mussels, mussels, from a site where mussels were previously determined to be HN free, were fed microencapsulated PAHs (composed of a mixture of phenanthrene, flouranthene, and benzo[a]pyrene) or PCBs (Aroclor 1254) and the prevalence of HN was assessed after 30 days of exposure

    Not Available

    No full text
    Not AvailableThe relationship between hemic neoplasia, a blood cell disorder in bivalve molluscs, and chemical contaminants was evaluated in the common mussel (Mytilus eduliscomplex). Hemic neoplasia (HN) is endemic to mussel populations in Puget Sound. The prevalence of hemic neoplasia ranged from 0 to 30% in mussels from nine sites in Puget Sound, Washington. Organic chemical contamination in sediment from these sites range from 0.1 to 64.0 ppm of polycyclic aromatic hydrocarbons (PAHs) and 0.07 to 0.50 ppm chlorinated hydrocarbons. No relationship between the body burden of environmental contaminants and the prevalence of HN in mussels was identified. To evaluate the short-term ability of chemical contaminants to induce HN in mussels, mussels, from a site where mussels were previously determined to be HN free, were fed microencapsulated PAHs (composed of a mixture of phenanthrene, flouranthene, and benzo[a]pyrene) or PCBs (Aroclor 1254) and the prevalence of HN was assessed after 30 days of exposure.Not Availabl

    Effects of seawater pCO2 and temperature on shell growth, shell stability, condition and cellular stress of Western Baltic Sea Mytilus edulis (L.) and Arctica islandica (L.)

    No full text
    Acidification of the World’s oceans may directly impact reproduction, performance and shell formation of marine calcifying organisms. In addition, since shell production is costly and stress in general draws on an organism’s energy budget, shell growth and stability of bivalves should indirectly be affected by environmental stress. The aim of this study was to investigate whether a combination of warming and acidification leads to increased physiological stress (lipofuscin accumulation and mortality) and affects the performance [shell growth, shell breaking force, condition index (Ci)] of young Mytilus edulis and Arctica islandica from the Baltic Sea. We cultured the bivalves in a fully-crossed 2-factorial experimental setup (seawater (sw) pCO2 levels “low”, “medium” and “high” for both species, temperature levels 7.5, 10, 16, 20 and 25 °C for M. edulis and 7.5, 10 and 16 °C for A. islandica) for 13 weeks in summer. Mytilus edulis and A. islandica appeared to tolerate wide ranges of sw temperature and pCO2. Lipofuscin accumulation of M. edulis increased with temperature while the Ci decreased, but shell growth of the mussels only sharply decreased while its mortality increased between 20 and 25 °C. In A. islandica, lipofuscin accumulation increased with temperature, whereas the Ci, shell growth and shell breaking force decreased. The pCO2 treatment had only marginal effects on the measured parameters of both bivalve species. Shell growth of both bivalve species was not impaired by under-saturation of the sea water with respect to aragonite and calcite. Furthermore, independently of water temperatures shell breaking force of both species and shell growth of A. islandica remained unaffected by the applied elevated sw pCO2 for several months. Only at the highest temperature (25 °C), growth arrest of M. edulis was recorded at the high sw pCO2 treatment and the Ci of M. edulis was slightly higher at the medium sw pCO2 treatment than at the low and high sw pCO2 treatments. The only effect of elevated sw pCO2 on A. islandica was an increase in lipofuscin accumulation at the high sw pCO2 treatment compared to the medium sw pCO2 treatment. Our results show that, despite this robustness, growth of both M. edulis and A. islandica can be reduced if sw temperatures remain high for several weeks in summer. As large body size constitutes an escape from crab and sea star predation, this can make bivalves presumably more vulnerable to predation—with possible negative consequences on population growth. In M. edulis, but not in A. islandica, this effect is amplified by elevated sw pCO2. We follow that combined effects of elevated sw pCO2 and ocean warming might cause shifts in future Western Baltic Sea community structures and ecosystem services; however, only if predators or other interacting species do not suffer as strong from these stressors
    corecore