109 research outputs found

    Congenital and neonatal malaria in a rural Kenyan district hospital: An eight-year analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria remains a significant burden in sub-Saharan Africa. However, data on burden of congenital and neonatal malaria is scarce and contradictory, with some recent studies reporting a high burden. Using prospectively collected data on neonatal admissions to a rural district hospital in a region of stable malaria endemicity in Kenya, the prevalence of congenital and neonatal malaria was described.</p> <p>Methods</p> <p>From 1<sup>st </sup>January 2002 to 31<sup>st </sup>December 2009, admission and discharge information on all neonates admitted to Kilifi District Hospital was collected. At admission, blood was also drawn for routine investigations, which included a full blood count, blood culture and blood slide for malaria parasites.</p> <p>Results</p> <p>Of the 5,114 neonates admitted during the eight-year surveillance period, blood slide for malaria parasites was performed in 4,790 (93.7%). 18 (0.35%) neonates with <it>Plasmodium falciparum </it>malaria parasitaemia, of whom 11 were admitted within the first week of life and thus classified as congenital parasitaemia, were identified. 7/18 (39%) had fever. Parasite densities were low, ≤50 per μl in 14 cases. The presence of parasitaemia was associated with low haemoglobin (Hb) of <10 g/dl (χ<sup>2 </sup>10.9 P = 0.001). The case fatality rate of those with and without parasitaemia was similar. <it>Plasmodium falciparum </it>parasitaemia was identified as the cause of symptoms in four neonates.</p> <p>Conclusion</p> <p>Congenital and neonatal malaria are rare in this malaria endemic region. Performing a blood slide for malaria parasites among sick neonates in malaria endemic regions is advisable. This study does not support routine treatment with anti-malarial drugs among admitted neonates with or without fever even in a malaria endemic region.</p

    Simplified molecular detection of Leishmania parasites in various clinical samples from patients with leishmaniasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular methods to detect <it>Leishmania </it>parasites are considered specific and sensitive, but often not applied in endemic areas of developing countries due to technical complexity. In the present study isothermal, nucleic acid sequence based amplification (NASBA) was coupled to oligochromatography (OC) to develop a simplified detection method for the diagnosis of leishmaniasis. NASBA-OC, detecting <it>Leishmania </it>RNA, was evaluated using clinical samples from visceral leishmaniasis patients from East Africa (n = 30) and cutaneous leishmaniasis from South America (n = 70) and appropriate control samples.</p> <p>Results</p> <p>Analytical sensitivity was 10 parasites/ml of spiked blood, and 1 parasite/ml of culture. Diagnostic sensitivity of NASBA-OC was 93.3% (95% CI: 76.5%-98.8%) and specificity was 100% (95% CI: 91.1%-100%) on blood samples, while sensitivity and specificity on skin biopsy samples was 98.6% (95% CI: 91.2%-99.9%) and 100% (95% CI: 46.3%-100%), respectively.</p> <p>Conclusion</p> <p>The NASBA-OC format brings implementation of molecular diagnosis of leishmaniasis in resource poor countries one step closer.</p

    Pentamidine Dosage: A Base/Salt Confusion

    Get PDF
    Pentamidine has a long history in the treatment of human African trypanosomiasis (HAT) and leishmaniasis. Early guidelines on the dosage of pentamidine were based on the base-moiety of the two different formulations available. Confusion on the dosage of pentamidine arose from a different labelling of the two available products, either based on the salt or base moiety available in the preparation. We provide an overview of the various guidelines concerning HAT and leishmaniasis over the past decades and show the confusion in the calculation of the dosage of pentamidine in these guidelines and the subsequent published reports on clinical trials and reviews. At present, only pentamidine isethionate is available, but the advised dosage for HAT and leishmaniasis is (historically) based on the amount of pentamidine base. In the treatment of leishmaniasis this is probably resulting in a subtherapeutic treatment. There is thus a need for a new, more transparent and concise guideline concerning the dosage of pentamidine, at least in the treatment of HAT and leishmaniasi

    Maternal Malaria and Perinatal HIV Transmission, Western Kenya1,2

    Get PDF
    To determine whether maternal placental malaria is associated with an increased risk for perinatal mother-to-child HIV transmission (MTCT), we studied HIV-positive women in western Kenya. We enrolled 512 mother-infant pairs; 128 (25.0%) women had malaria, and 102 (19.9%) infants acquired HIV perinatally. Log10 HIV viral load and episiotomy or perineal tear were associated with increased perinatal HIV transmission, whereas low-density malaria (<10,000 parasites/μL) was associated with reduced risk (adjusted relative risk [ARR] 0.4). Among women dually infected with malaria and HIV, high-density malaria (>10,000 parasites/μL) was associated with increased risk for perinatal MTCT (ARR 2.0), compared to low-density malaria. The interaction between placental malaria and MTCT appears to be variable and complex: placental malaria that is controlled at low density may cause an increase in broad-based immune responses that protect against MTCT; uncontrolled, high-density malaria may simultaneously disrupt placental architecture and generate substantial antigen stimulus to HIV replication and increase risk for MTCT

    Detection and identification of human Plasmodium species with real-time quantitative nucleic acid sequence-based amplification

    Get PDF
    BACKGROUND: Decisions concerning malaria treatment depend on species identification causing disease. Microscopy is most frequently used, but at low parasitaemia (<20 parasites/μl) the technique becomes less sensitive and time consuming. Rapid diagnostic tests based on Plasmodium antigen detection do often not allow for species discrimination as microscopy does, but also become insensitive at <100 parasites/μl. METHODS: This paper reports the development of a sensitive and specific real-time Quantitative Nucleic Acid Sequence Based Amplification (real-time QT-NASBA) assays, based on the small-subunit 18S rRNA gene, to identify the four human Plasmodium species. RESULTS: The lower detection limit of the assay is 100 – 1000 molecules in vitro RNA for all species, which corresponds to 0.01 – 0.1 parasite per diagnostic sample (i.e. 50 μl of processed blood). The real-time QT-NASBA was further evaluated using 79 clinical samples from malaria patients: i.e. 11 Plasmodium. falciparum, 37 Plasmodium vivax, seven Plasmodium malariae, four Plasmodium ovale and 20 mixed infections. The initial diagnosis of 69 out of the 79 samples was confirmed with the developed real-time QT-NASBA. Re-analysis of seven available original slides resolved five mismatches. Three of those were initially identified as P. malariae mono-infection, but after re-reading the slides P. falciparum was found, confirming the real-time QT-NASBA result. The other two slides were of poor quality not allowing true species identification. The remaining five discordant results could not be explained by microscopy, but may be due to extreme low numbers of parasites present in the samples. In addition, 12 Plasmodium berghei isolates from mice and 20 blood samples from healthy donors did not show any reaction in the assay. CONCLUSION: Real-time QT-NASBA is a very sensitive and specific technique with a detection limit of 0.1 Plasmodium parasite per diagnostic sample (50 μl of blood) and can be used for the detection, identification and quantitative measurement of low parasitaemia of Plasmodium species, thus making it an effective tool for diagnostic purposes and useful for epidemiological and drug studies

    A Randomized Controlled Trial of Folate Supplementation When Treating Malaria in Pregnancy with Sulfadoxine-Pyrimethamine

    Get PDF
    OBJECTIVES: Sulfadoxine-pyrimethamine (SP) is an antimalarial drug that acts on the folate metabolism of the malaria parasite. We investigated whether folate (FA) supplementation in a high or a low dose affects the efficacy of SP for the treatment of uncomplicated malaria in pregnant women. DESIGN: This was a randomized, placebo-controlled, double-blind trial. SETTING: The trial was carried out at three hospitals in western Kenya. PARTICIPANTS: The participants were 488 pregnant women presenting at their first antenatal visit with uncomplicated malaria parasitaemia (density of ≥ 500 parasites/μl), a haemoglobin level higher than 7 g/dl, a gestational age between 17 and 34 weeks, and no history of antimalarial or FA use, or sulfa allergy. A total of 415 women completed the study. INTERVENTIONS: All participants received SP and iron supplementation. They were randomized to the following arms: FA 5 mg, FA 0.4 mg, or FA placebo. After 14 days, all participants continued with FA 5 mg daily as per national guidelines. Participants were followed at days 2, 3, 7, 14, 21, and 28 or until treatment failure. OUTCOME MEASURES: The outcomes were SP failure rate and change in haemoglobin at day 14. RESULTS: The proportion of treatment failure at day 14 was 13.9% (19/137) in the placebo group, 14.5% (20/138) in the FA 0.4 mg arm (adjusted hazard ratio [AHR], 1.07; 98.7% confidence interval [CI], 0.48 to 2.37; p = 0.8), and 27.1% (38/140) in the FA 5 mg arm (AHR, 2.19; 98.7% CI, 1.09 to 4.40; p = 0.005). The haemoglobin levels at day 14 were not different relative to placebo (mean difference for FA 5 mg, 0.17 g/dl; 98.7% CI, −0.19 to 0.52; and for FA 0.4 mg, 0.14 g/dl; 98.7% CI, −0.21 to 0.49). CONCLUSIONS: Concomitant use of 5 mg FA supplementation compromises the efficacy of SP for the treatment of uncomplicated malaria in pregnant women. Countries that use SP for treatment or prevention of malaria in pregnancy need to evaluate their antenatal policy on timing or dose of FA supplementation

    A randomized trial to monitor the efficacy and effectiveness by QT-NASBA of artemether-lumefantrine versus dihydroartemisinin-piperaquine for treatment and transmission control of uncomplicated Plasmodium falciparum malaria in western Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many countries have implemented artemisinin-based combination therapy (ACT) for the first-line treatment of malaria. Although many studies have been performed on efficacy and tolerability of the combination arthemeter-lumefantrine (AL) or dihydroartemisinin-piperaquine (DP), less is known of the effect of these drugs on gametocyte development, which is an important issue in malaria control.</p> <p>Methods and results</p> <p>In this two-arm randomized controlled trial, 146 children were treated with either AL or DP. Both groups received directly observed therapy and were followed for 28 days after treatment. Blood samples were analysed with microscopy and NASBA. In comparison with microscopy NASBA detected much more gametocyte positive individuals. Moreover, NASBA showed a significant difference in gametocyte clearance in favour of AL compared to DP. The decline of parasitaemia was slower and persistence or development of gametocytes was significantly higher and longer at day 3, 7 and 14 in the DP group but after 28 days no difference could be observed between both treatment arms.</p> <p>Conclusion</p> <p>Although practical considerations could favour the use of one drug over another, the effect on gametocytogenesis should also be taken into account and studied further using molecular tools like NASBA. This also applies when a new drug is introduced.</p> <p>Trial registration</p> <p>Current controlled trials ISRCTN36463274</p

    Enzyme-linked immunoassay for dengue virus IgM and IgG antibodies in serum and filter paper blood

    Get PDF
    BACKGROUND: The reproducibilty of dengue IgM and IgG ELISA was studied in serum and filter paper blood spots from Vietnamese febrile patients. METHODS: 781 pairs of acute (t0) and convalescent sera, obtained after three weeks (t3) and 161 corresponding pairs of filter paper blood spots were tested with ELISA for dengue IgG and IgM. 74 serum pairs were tested again in another laboratory with similar methods, after a mean of 252 days. RESULTS: Cases were classified as no dengue (10 %), past dengue (55%) acute primary (7%) or secondary (28%) dengue. Significant differences between the two laboratories' results were found leading to different diagnostic classification (kappa 0.46, p < 0.001). Filter paper results correlated poorly to serum values, being more variable and lower with a mean (95% CI) difference of 0.82 (0.36 to 1.28) for IgMt3, 0.94 (0.51 to 1.37) for IgGt0 and 0.26 (-0.20 to 0.71) for IgGt3. This also led to differences in diagnostic classification (kappa value 0.44, p < 0.001) The duration of storage of frozen serum and dried filter papers, sealed in nylon bags in an air-conditioned room, had no significant effect on the ELISA results. CONCLUSION: Dengue virus IgG antibodies in serum and filter papers was not affected by duration of storage, but was subject to inter-laboratory variability. Dengue virus IgM antibodies measured in serum reconstituted from blood spots on filter papers were lower than in serum, in particular in the acute phase of disease. Therefore this method limits its value for diagnostic confirmation of individual patients with dengue virus infections. However the detection of dengue virus IgG antibodies eluted from filter paper can be used for sero-prevalence cross sectional studies

    The incidence, aetiology and outcome of acute seizures in children admitted to a rural Kenyan district hospital

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute seizures are a common cause of paediatric admissions to hospitals in resource poor countries and a risk factor for neurological and cognitive impairment and epilepsy. We determined the incidence, aetiological factors and the immediate outcome of seizures in a rural malaria endemic area in coastal Kenya.</p> <p>Methods</p> <p>We recruited all children with and without seizures, aged 0–13 years and admitted to Kilifi District hospital over 2 years from 1<sup>st </sup>December 2004 to 30<sup>th </sup>November 2006. Only incident admissions from a defined area were included. Patients with epilepsy were excluded. The population denominator, the number of children in the community on 30<sup>th </sup>November 2005 (study midpoint), was modelled from a census data.</p> <p>Results</p> <p>Seizures were reported in 900/4,921(18.3%) incident admissions and at least 98 had status epilepticus. The incidence of acute seizures in children 0–13 years was 425 (95%CI 386, 466) per 100,000/year and was 879 (95%CI 795, 968) per 100,000/year in children <5 years. This incidence data may however be an underestimate of the true incidence in the community. Over 80% of the seizures were associated with infections. Neonatal infections (28/43 [65.1%]) and falciparum malaria (476/821 [58.0%]) were the main diseases associated with seizures in neonates and in children six months or older respectively. Falciparum malaria was also the main illness (56/98 [57.1%]) associated with status epilepticus. Other illnesses associated with seizures included pyogenic meningitis, respiratory tract infections and gastroenteritis. Twenty-eight children (3.1%) with seizures died and 11 surviving children (1.3%) had gross neurological deficits on discharge. Status epilepticus, focal seizures, coma, metabolic acidosis, bacteraemia, and pyogenic meningitis were independently associated with mortality; while status epilepticus, hypoxic ischaemic encephalopathy and pyogenic meningitis were independently associated with neurological deficits on discharge.</p> <p>Conclusion</p> <p>There is a high incidence of acute seizures in children living in this malaria endemic area of Kenya. The most important causes are diseases that are preventable with available public health programs.</p
    corecore