10,730 research outputs found

    Bounce-free spherical hydrodynamic implosion

    Full text link
    In a bounce-free spherical hydrodynamic implosion, the post-stagnation hot core plasma does not expand against the imploding flow. Such an implosion scheme has the advantage of improving the dwell time of the burning fuel, resulting in a higher fusion burn-up fraction. The existence of bounce-free spherical implosions is demonstrated by explicitly constructing a family of self-similar solutions to the spherically symmetric ideal hydrodynamic equations. When applied to a specific example of plasma liner driven magneto-inertial fusion, the bounce-free solution is found to produce at least a factor of four improvement in dwell time and fusion energy gain.Comment: accepted by Phys. Plasmas (Nov. 7, 2011); for Ref. 11, please see ftp://ftp.lanl.gov/public/kagan/liner_evolution.gi

    Self-similar structure and experimental signatures of suprathermal ion distribution in inertial confinement fusion implosions

    Get PDF
    The distribution function of suprathermal ions is found to be self-similar under conditions relevant to inertial confinement fusion hot-spots. By utilizing this feature, interference between the hydro-instabilities and kinetic effects is for the first time assessed quantitatively to find that the instabilities substantially aggravate the fusion reactivity reduction. The ion tail depletion is also shown to lower the experimentally inferred ion temperature, a novel kinetic effect that may explain the discrepancy between the exploding pusher experiments and rad-hydro simulations and contribute to the observation that temperature inferred from DD reaction products is lower than from DT at National Ignition Facility.Comment: Revised version accepted for publication in PRL. "Copyright (2015) by the American Physical Society.

    Fermi Gases in Slowly Rotating Traps: Superfluid vs Collisional Hydrodynamics

    Full text link
    The dynamic behavior of a Fermi gas confined in a deformed trap rotating at low angular velocity is investigated in the framework of hydrodynamic theory. The differences exhibited by a normal gas in the collisional regime and a superfluid are discussed. Special emphasis is given to the collective oscillations excited when the deformation of the rotating trap is suddenly removed or when the rotation is suddenly stopped. The presence of vorticity in the normal phase is shown to give rise to precession and beating phenomena which are absent in the superfluid phase.Comment: 4 pages, 2 figure

    Intermittent implosion and pattern formation of trapped Bose-Einstein condensates with attractive interaction

    Full text link
    The collapsing dynamics of a trapped Bose-Einstein condensate (BEC) with attractive interaction are revealed to exhibit two previously unknown phenomena. During the collapse, BEC undergoes a series of rapid implosions that occur {\it intermittently} within a very small region. When the sign of the interaction is suddenly switched from repulsive to attractive, e.g., by the Feshbach resonance, density fluctuations grow to form various patterns such as a shell structure.Comment: 5 pages, 2 figures, RevTeX, epsf.sty, corrected loss rate

    Possible role of 3He impurities in solid 4He

    Full text link
    We use a quantum lattice gas model to describe essential aspects of the motion of 4He atoms and of 3He impurities in solid 4He. This study suggests that 3He impurities bind to defects and promote 4He atoms to interstitial sites which can turn the bosonic quantum disordered crystal into a metastable supersolid. It is suggested that defects and interstitial atoms are produced during the solid 4He nucleation process where the role of 3He impurities (in addition to the cooling rate) is known to be important even at very small (1 ppm) impurity concentration. It is also proposed that such defects can form a glass phase during the 4He solid growth by rapid cooling.Comment: 4 two-column Revtex pages, 4 figures. Europhysics Letters (in Press

    Correlation between the Extraordinary Hall Effect and Resistivity

    Full text link
    We study the contribution of different types of scattering sources to the extraordinary Hall effect. Scattering by magnetic nano-particles embedded in normal-metal matrix, insulating impurities in magnetic matrix, surface scattering and temperature dependent scattering are experimentally tested. Our new data, as well as previously published results on a variety of materials, are fairly interpreted by a simple modification of the skew scattering model

    Simulations of thermal Bose fields in the classical limit

    Get PDF
    We demonstrate that the time-dependent projected Gross-Pitaevskii equation derived earlier [Davis, et al., J. Phys. B 34, 4487 (2001)] can represent the highly occupied modes of a homogeneous, partially-condensed Bose gas. We find that this equation will evolve randomised initial wave functions to equilibrium, and compare our numerical data to the predictions of a gapless, second-order theory of Bose-Einstein condensation [S. A. Morgan, J. Phys. B 33, 3847 (2000)]. We find that we can determine the temperature of the equilibrium state when this theory is valid. Outside the range of perturbation theory we describe how to measure the temperature of our simulations. We also determine the dependence of the condensate fraction and specific heat on temperature for several interaction strengths, and observe the appearance of vortex networks. As the Gross-Pitaevskii equation is non-perturbative, we expect that it can describe the correct thermal behaviour of a Bose gas as long as all relevant modes are highly occupied.Comment: 15 pages, 12 figures, revtex4, follow up to Phys. Rev. Lett. 87 160402 (2001). v2: Modified after referee comments. Extra data added to two figures, section on temperature determination expande

    Theory of hopping conduction in arrays of doped semiconductor nanocrystals

    Full text link
    The resistivity of a dense crystalline array of semiconductor nanocrystals (NCs) depends in a sensitive way on the level of doping as well as on the NC size and spacing. The choice of these parameters determines whether electron conduction through the array will be characterized by activated nearest-neighbor hopping or variable-range hopping (VRH). Thus far, no general theory exists to explain how these different behaviors arise at different doping levels and for different types of NCs. In this paper we examine a simple theoretical model of an array of doped semiconductor NCs that can explain the transition from activated transport to VRH. We show that in sufficiently small NCs, the fluctuations in donor number from one NC to another provide sufficient disorder to produce charging of some NCs, as electrons are driven to vacate higher shells of the quantum confinement energy spectrum. This confinement-driven charging produces a disordered Coulomb landscape throughout the array and leads to VRH at low temperature. We use a simple computer simulation to identify different regimes of conduction in the space of temperature, doping level, and NC diameter. We also discuss the implications of our results for large NCs with external impurity charges and for NCs that are gated electrochemically.Comment: 14 pages, 10 figures; extra schematic figures added; revised introductio

    On the influence of time and space correlations on the next earthquake magnitude

    Full text link
    A crucial point in the debate on feasibility of earthquake prediction is the dependence of an earthquake magnitude from past seismicity. Indeed, whilst clustering in time and space is widely accepted, much more questionable is the existence of magnitude correlations. The standard approach generally assumes that magnitudes are independent and therefore in principle unpredictable. Here we show the existence of clustering in magnitude: earthquakes occur with higher probability close in time, space and magnitude to previous events. More precisely, the next earthquake tends to have a magnitude similar but smaller than the previous one. A dynamical scaling relation between magnitude, time and space distances reproduces the complex pattern of magnitude, spatial and temporal correlations observed in experimental seismic catalogs.Comment: 4 Figure
    corecore