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We demonstrate that the time-dependent projected Gross-Pitaevskii eq@®&nderived earliefM. J.
Davis, R. J. Ballagh, and K. Burnett, J. Phys38 4487(2001)] can represent the highly occupied modes of
a homogeneous, partially-condensed Bose gas. Contrary to the often held belief that the GPE is valid only at
zero temperature, we find that this equation will evolve randomized initial wave functions to a state describing
thermal equilibrium. In the case of small interaction strengths or low temperatures, our numerical results can
be compared to the predictions of Bogoliubov theory and its perturbative extensions. This demonstrates the
validity of the GPE in these limits and allows us to assign a temperature to the simulations unambiguously.
However, the GPE method is nonperturbative, and we believe it can be used to describe the thermal properties
of a Bose gas even when Bogoliubov theory fails. We suggest a different technique to measure the temperature
of our simulations in these circumstances. Using this approach we determine the dependence of the condensate
fraction and specific heat on temperature for several interaction strengths, and observe the appearance of vortex
networks. Interesting behavior near the critical point is observed and discussed.
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[. INTRODUCTION and investigate the appearance of vortices in our simulations.
The use of the dynamical GPE at finite temperature was
The observation of Bose-Einstein condensatiB&C) in originally proposed by Svistunov, and co-workdes—12).
dilute alkali-metal gase®2—4] heralds a new era in the study Despite this suggestion first appearing in 1991, there have
of quantum fields. It offers a unique opportunity to carry outbeen relatively few numerical studies based on this approach.
experiments in the laboratory for which theoretical calcula-Pamleet al. have performed calculations of the approach to
tions beginning from a microscopic model of the system aréquilibrium of a near ideal superfluid3], while Marshall
tractable. However, such calculations are fraught with diffi-€t &l-[14] carried out a qualitative study of evaporative cool-
culties at finite temperatures. While equilibrium perturbationind USing a two-dimensiondPD) GPE. Referenceid5-20
theories have had much succd$§s-7] dynamical calcula- also use classical meth.OdS to represent thermal Bose-
tions often require severe approximations to be made. cond(_—:tnsed systems. Similar approximations to other quan-
In Ref. [1] we developed an approximate formalism to tum field equations have been successful elsewfire

. : This paper is organized as follows. In Sec. Il we give a
describe the dynamics of a thermal Bose condensate bas H T o : -
. .. . . S f derivation of the fini mperatur ross-Pitaevskii

on the Gross-Pitaevskii equatig@PE). This description is Brlef derivation of the finite te perature Gross-Pitacvs

lid when the low-Ivi q t th assi Iequation. In Sec. Ill we describe and justify the simplifica-
valid w en the ow-lying modes o the system are classiCaliion of the FTGPE to the projected Gross-Pitaevskii equa-
satisfying the criterioN,>1. This is analogous to the situ-

R ’ : ' tion, before describing the simulations we have carried out in
ation in laser physics, where the highly occupied laser modegec. |v. Section V presents the qualitative evidence that the

can be well described by classical equations. We proceedegmations have reached equilibrium, while Sec. VI carries
by dividing the field operator into a classical region repre-oyt 5 quantitative analysis of our numerical data. Section VII
sented by a wave functioy(x) describing the condensate giscysses the behavior of the condensate fraction, specific
and its coherent excitations, with the remainder of the f'e|dneat, and vorticity of the system with temperature, before we
described by the quantum operat@)(x). We derived an conclude in Sec. VIII.

equation of motion forg(x) that we called the finite tem-
perature Gross-Pitaevskii equatiAT GPB.

The FTGPE is a rather complicated equation, however,
and in Ref[8] we briefly described the first results from the A full derivation of the FTGPE and a discussion of the
simpler projected Gross-Pitaevkskii equatidRGPE ob-  physics described by each of the terms can be found in Ref.
tained by neglecting the operatayi(x). These results dem- [1]. Here we outline the derivation beginning with the equa-
onstrate that the GPE alone can represent thermal Bogs®mn of motion for the Bose field operator
gases. In this paper we elaborate on these results and de-

Il. OUTLINE OF FORMALISM

scribe our method in more detail. We also consider the effect =

f icle i i he th | distributi AL 7Tx)¥ VI

of strong particle interactions on the thermal distributions i% - =Hgp @ () + U ¥ ()T (x) ¥ (x), (1)
*Electronic address: mdavis@physics.uq.edu.au whereU,=4x#2a/m is the effective interaction strength at
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low momentaa is thes-wave scattering length, amdis the  long length scales involved is completely appropriate. This is
particle massHy, is the single-particle Hamiltonian defined €xactly what the GPE describes, and in fact it has been used
by as a model of phase transitions in other areas of condensed
matter physics. Indeed our model has the same energy func-
) tional for these modes as used in the classical renormaliza-
sp™ %V + ViragX), 2)  tion group theory of the superfluid phase transition. It there-
fore seems reasonable to expect that the same
where Vy,{X) is the external trapping potential, if any is approximations are valid in this case.
present. The physical processes described by the various terms of
The route to the usual GPE is to assume that the full fieldEg. (5) are discussed in detail in RdflL]. In this paper, we
operator can be replaced by a wave functigix)—i.e., that ~ concentrate on a simplification of the FTGPE which is effec-
all quantum fluctuations can be neglected. We proceed intively a model of a restricted system. This allows us to dem-
stead by defining a projection opera®rsuch that onstrate some of the properties of the GPE without having to
solve the more complicated equation.

2

)

PU(x)= D, axdu(X), 3
(x) kgc k() ® Il. THE PROJECTED GPE
where the regiorC is determinedby the requirement that  In this paper, we wish to show that the GRone can

NkE<éTék>>l and the sef{¢,) defines some basis in describe evolution of general configurations of the coherent
which l%he Ha7miltonian is approximately diagonal at thereglonCtowards an equilibrium that can be parametrized by

boundary ofC. For these modes, the quantum fluctuation@ temperature. We therefore ignore all terms involvip(e)
part of the projected field operator can be ignored, and so wi Ed. (5) and concentrate on the first line,
replacea,— c, and write

a ~ ~
m%=Hspw(x>+uo7>{|w(x>|2¢(x>}, )

Y=, Cepi(X). (4)

keC
o o . which we call the projected GPE. Although E&) is com-
Defining the operato@=1—"P and QW (x) = n(x), oper-  pletely reversible, it is well known that deterministic nonlin-
ating on Eq.(1) with 7 and taking the mean value results in €ar systems with only a few degrees of freedom exhibit cha-

what we call the finite temperature GPE, otic, and hence ergodic behavif22]. If many modes are
occupied, the projected GPE contains many degrees of free-

dp(x) . R 5 dom and it is therefore reasonable to expect it to evolve to
'hT:Hsp¢(X)+UoP{|¢(X)| P(x)} equilibrium (except for specially chosen initial conditions
such as eigenstate solutigns
+U075{2|z//(x)|2< ;;(x)>+ (X)X ;]T(x»} The projected GPE describes a microcanonical system.
. o However, if the regionC is large, then its fluctuations in
+UoP{r* (X){7(X) (X)) + 24(x) energy and particle number in the grand canonical ensemble
~ R o A would be small. Hence we expect the final equilibrium state
X{(7" () 9(X))}+UoP{{5"(x) 7(x) 7(X))}. of the projected GPE to be similar to that of the finite tem-

(5) perature GPE coupled to a bai}(x) with the appropriate
chemical potential and temperature. The detailed nonequilib-
This equation describes the full dynamics of the coherengium dynamics of the systemill depend on the exchange of
region and its coupling to an effective heat bath described bgnergy and particles betwe€hand the bath—however, we
7(x). In general, the nonequilibrium evolution depends onleave the coupling ofs(x) and 7(x) to be addressed in fu-
the coupling between these two regions and the exchange @fre work.
energy and particles that this allows. The FTGPE must be

complemented by an equation of motion fg(x) and in

principle this can be obtained using a form of quantum ki- ] ) o o

netic theory. _The spatial representation of the projection operation is
The only approximation that has been made in the deriWrtten as

vation of the FTGPE is that the modes represented/x)

must satisfy the criterion of classicality, thathg>1. The PF(x)}= > ¢k(X)f 43X’ ¢ (X' )F(X'), @

FTGPE is a nonperturbative equation, and therefore we ex- keC

pect that it will be valid in the region of the phase transition,

as long as only the highly occupied modes are treated. The@nd this operation must be carried out numerically every

is perhaps a misperception in the BEC community that théime we calculate the nonlinear term in the PGPE. This is a

GPE is only valid afT=0. However, it is well known that very time consuming operation in general, taking many times

close to the phase transition a classical description of théonger than calculatingy(x)|?¢(x) itself.

A. The projector
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The operation is much simpler numerically if we use a = ~o

plane-wave basis in our projector f dox|g(x)|*=1. (11
exp(ik-x) The nonlinear constant is
t(X)=——F=, 8
W

2mNU

: . Cu= 0 (12)
whereV is the volume of our system. In this case E@) T

becomes simply the application of a forward Fourier trans-

form to our functionF(x), followed by an inverse Fourier \yhereN is the total number of particles in the system, and

transformation that includes only the modes in the coherent . . . ~
. . . IS the period. Our dimensionless parameters arex/L,
region. Thus our numerical procedure is

wave vectork=KkL, energye=¢/e,, and timer=¢t/#,
with &, =#2/(2mL2).

P{F ()} = Oper{ P(K) O F ()1}, 9
where Qg7 and O¢7 refer to the forward and inverse fast A. Parameters
Fourier transform operations respectively, a¢k) is the The two parameters that determine all properties of the

representation of the project@?in Fourier space. There are system are the projectd? and the nonlinear constag,, .
very efficient routines available to carry out FFTs, and so we
find that it is extremely advantageous numerically to define 1. ProjectorP

our projector in the plane-wave basis. .
pro) P We have chosen a projection operator such that all modes

o included in the simulations haj&|<15x 2#/L, which en-
B. Implications ables us to use a computationally efficient numerical grid of

For any nonperiodic trapping potential, the use of a plane32X 32X 32 points. This means that 13997 modes are in-
wave basis is at odds with our requirement that the basisluded in the system.
must approximately diagonalize the Hamiltonian at the Grid size and aliasingThe nonlinear term of the GPE can
boundary of the regiof. In fact, it may not even satisfy this generate momentum components up to three times larger
requirement for a periodic potential if the boundary of thethan those which exist in the original wave function. Thus it
coherent region occurs at a low enough energy. would seem that calculating the tedm(x)|?(x) on a grid

If we consider a homogeneous system, however, th@nly slightly larger than the projector would cause problems
plane-wave basis will always satisfy our requirements. Irwith aliasing. The correct procedure would be instead to cal-
this case the effect of a condensate on the excitations of theulate this term on a grid size of 8®6x 96 points before
system is simply to mix modes of momemtand —p. Thus  performing the projection operation.
even if the Hamiltonian is not diagonalized at the boundary To check the effect of grid size we have performed simu-
of C, we can still apply the projector cleanly in Fourier lations where the nonlinear term was calculated on grids of
space. For these reasons, the simulations that we presentsize 32, 64, and 96 points, and found that there is no differ-
this paper are for the homogeneous Bose gas. We intend &nce in the equilibrium properties of the system. The detailed
address the issue of projectors for the trapped Bose gas Hependence of the condensate population during evolution is
future work. different in detail for each size grid, but follows the same

A direct advantage of simulating the homogeneous systeraverage curve. The same behavior is observed when adjust-
is that the condensate occupation is readily identified as thi@g the accuracy parameter of our adaptive step size algo-
k=0 component of the wave function. This is in contrast tofithm for evolving the GPE.
the trapped case, where the condensate mode changes withWe attribute this behavior to the deterministic chaos ex-
the condensate fraction. In general the condensate fractidtibited by the system. Any small numerical error is eventu-
must be determined by diagonalization, which can be a verglly magnified such that the system follows a quite different
time consuming procedufd9]. microscopic path through phase space, although the resulting

macroscopidaverage properties are unaffected.

IV. SIMULATIONS
2. Nonlinearity C,

We have performed simulations for a fully three-
dimensional homogeneous Bose gas with periodic bounda
conditions. The dimensionless equation we compute is

r We note that the choice of the nonlinear constant deter-
Xﬂnes only the ratio oNUy/L. This means that for a given
value of C,,;, we can choose the paramet&tsU,, andL

2% such that our conditiohl,=N|c,|?>1 is always satisfied for

; _ 2.5 7 V200 a given physical situation.

! ir VA0 + Cr [ 001700}, (10 gWe hgvg performed three series of simulations with non-

linearities ofC, =500, 2000, and 10 000. The highest value

where the normalization of the wave function has been deef C,, was chosen such that all the states contained in the
fined to be calculation are phononlike for a large condensate fraction.
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The boundary between phononlike and particlelike states f6k<3x 27 must have some initial population, while all other

the homogeneous gas is

h2K3

2m =nolo,

13

where we have definetl, to be the condensate number
within the volumel 3, and thusiy=N,/L2 is the condensate
density. Converting Eq(13) to dimensionless units we find
that

No
|W!

ko=1/ Cn (19
and therefore for a condensate fractiol\gf/N=1 we have
C,y=10000-k,~15.9x 2,
Cp=2000—Kko~7.12X 21,
C,=500—ko~3.56x 2.

We find that computations with smaller values @f; take

components may be unoccupied. For low energies, when this
distribution including the condensate cannot be totally flat,

we keep the populations of the components withKi2s
<3 equal, and adjust the condensate population such that the
wave function has the energy we require. An example of this

situation is shown in Fig. () for the E=7000 initial wave
function in theC,=10000 simulation series.

For simulations with a sufficiently high total enerdy
that the inner 123 components may have equal population,
we continue to add further shells of highlerto our wave
function. The amplitudes of the inner components are read-
justed to maintain the required normalization. This causes
the energy of the system to increase monotonically with each
new shell until we find two wave functions that bound the
energy we are looking for, differing only in their outermost
shell. We then adjust the population of the outermost shell
downwards until we reach the required energy.

This procedure is necessary due to the nonlinearity of the
problem. In the case of the ideal gas,(=0), we can cal-
culate the kinetic energgand hence the total enenggf the
wave function simply by knowing the distribution ¢d,|?,
via

comparatively longer to reach equilibrium. This is because

the equilibration rate is approximately proportional @g;,

whereas the minimum time step allowed for a given accuracy
in the numerical integration of the PGPE only increases

slowly with decreasing,,.

To give an indication of how these dimensionless param-

eters compare to experimental setups, @j=10000 we
can choosé’Rb atoms withN=1.8x 10° andL~26 um to
give a number density of about ¥cm™*—similar to cur-
rent experiments on BEC in traps.

B. Initial wave functions

We begin our simulations with strongly nonequilibrium
wave functions with a chosen total energy We construct

ﬁZ
Exin=— ﬁf d3x ¢* (X) V2h(x),

h2
=om ; |cil 2K2. (16)

However, forC,,>0 we must also add the interaction energy
of the wave function to the total energy. This is,

Uo

* A%
2 2 CquCan5p+q—m—n!

Eint:%f d3X|(x)|*=
pgmn 7

these by populating the amplitudes of the wave function

componentg, in the expansion
(x0)= 2, e, (15

The populationgc,|? are chosen such that the distribution is

and depends nontrivially on tHe,}.
Further images of initial- and final-state wave functions
are shown in Fig. 1 irk space, and Fig. 2 in real space.

C. Evolution

as flat as possible, while the phases of the amplitudes are The PGPE is evolved in the interaction picture, using a

chosen at randorfiL2].
The total energyE is a constraint on the distribution of
amplitudes. The energy of a pure condensatkgjs C,/2,

all of this being due to interactions—the kinetic energy is
zero. To have a wave function with an energy not much,

larger thanC,,/2, the occupations of the=0 state and the
k=21 states cannot be equéiVe use the notatiok=k|.)

fourth-order Runge-Kutta method with adaptive step size de-
termined by estimating the fifth-order truncation error. The
acceptable relative truncation error was set to be'd@or
all components with an occupation e£10 *Ny/N. This
resulted in typical time steps as presented in Table I, which
ould be integrated in a reasonable time on a modern work-
station.

We evolve the simulations for at least twice as long as it

Therefore, for the lowest energy simulations the initial con-takes for the system to reach equilibrium, based on the ob-
densate population is necessarily larger than the excited stagervation of the behavior of the condensate fractgee Sec.

populations.

V). The time period for each value &, is also given in

To ensure that the initial wave functions are sufficiently Table I. Thus the longest of these simulations requiresl
randomized, we enforce the condition that all 123 states with< 10° time steps.
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FIG. 1. Two-dimensional slices of wave functions through the

k,=0 plane in momentum space for ti@&,=10000, E=7000 FIG. 2. Two-dimensional slices of wave functions near the
simulations.(a) Base 10 Ic_Jgarlthm of thie-space wave fur_lctlon at _g plane in real space for th&,;= 10 000, E=7000 simulations.
7=0. (b) Base 10 logarithm of thdx—quc_e wave function at (a) Base 10 logarithm of the real-space wave function=a0. (b)
=0.2 once the system has reached equilibrium. Base 10 logarithm of the real-space wave functiorra0.2 once
the system has reached equilibrium.
V. EVIDENCE FOR EQUILIBRIUM

Although the PGPE is completely reversible, the final-equilibrium is equivalent to the ensemble average over many
state wave functions displayed in Figs. 1 and 2 indicate thadifferent systems. We therefore perform a time-average over
the simulations have evolved the system to an apparent equiie last 50 wave functions saved, all with> 7.
librium state. Thek-space distributions have evolved from
initially being flat to a form that is peaked at the center, and
tails away towards the edges. Also, there is a smoothing out
of both the phase and density profiles of the real-space wave Strong evidence that the simulations have reached equi-
function. After a certain time of evolutiongy, the plots for  |ibrium is provided by the time dependence of the conden-
the wave functions appear to be isomorphic fof 7. sate population. For all simulations this settles down to an

We would like to note that the equilibrium properties de- 5\ erage valuédependent on the ener§) that fluctuates by
pend only on the total energy and momentum of the initialy gma|l amount. The initial time evolution of the condensate
wave function—they are independent of the shape of the.y tion for five different energies witB,,= 10 000 is shown
initial distribution ink space. We have performed simulations;, Fig. 3.
with nonspherical initial wave functions, and found that they = 114 average condensate occupation in equilibrium for all

evolve to a spherical equilibrium state. Also, as the GPEgimulations for theC,,= 10000 case are presented in Fig.
conserves momentum, for the condensate to form inkthe

=0 mode the initial distribution must have zero total mo- . o ) ,
mentum. We have performed simulations where the initial TABLE I. The typical minimum and maximum time steps for
distribution had a finite momentum. and observed the conthe simulations. The minimum is for high-energy simulations, and
densate to form in a nonzero momentum state as expectedn® maximum is for low-energy simulations.

To determine the properties of the system at equilibrium;

A. Condensate occupation

Minimum time step Maximum time step Length of

in theory we should carry out many different simulations . 6 : A )
each with the same initial populations but with different =" (units of 10°7) (units of 107 evolution 7
choices of the initial phases, and then take the ensembi&oo 4 6 2.0
average. However, this is an extremely large computationatooo 1.6 4.4 0.4
task. Instead, we assume the ergodic theorem applies, suebooo 0.45 1.2 0.2

that the time average over the evolution of a single system at
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FIG. 3. Plot of the initial time evolution oNg(7)/N for four
different simulation energies witG,= 10 000. From top to bottom:
E=5500,7000,8500,9250,10 000. The simulations were run until FIG. 5. Plots of the equilibrium Bogoliubov quasiparticle distri-
7=0.2. Other values of the nonlinearity give qualitatively similar Putions averaged over time and angle for four different total ener-
results. gies. Squares=6000; crossesd:=7500; circles E=9000; dots,

E=11000. The mean condensate occupation for the first three dis-
4(a). The fluctuations of the condensate population are inditributions is off axis.
cated by thgbarely visiblg vertical lines at each point, and
these are largest for tHé=9000 simulation. For compari- distinct bulge in this region. The shape of the corresponding
son, the corresponding curve for the ideal gas is plotted iurves forC,=500 and 2000 fall in between tt@&, =0 and
Fig. 4(b). We can see that fa€,,=0 the curve is linear up to 10000 cases.
the transition point, but the&,=10000 curve displays a

k (2mL)

B. Particle distribution

1

.. Further evidence of equilibrium is provided by the distri-
.. (a) bution of the particles in momentum space. Rather than us-
0.8¢ . ing the plane-wave basis, we transform the wave functions
. into the quasiparticle basis of quadratic Bogoliubov theory.
E 0.6f . For the homogeneous gas, this theory can be solved analyti-
“~ ‘e . cally and we can write the quasiparticle amplitugeas
£ o04f .
', b= UxCx—vKC—k, (18
0.2} ¢
* where
0 ",
6 8 10 12 1 — ay 19
3 U= y VT ——5,
E (10 SL) “ l—aﬁ “ V1—ap
1
(b) and «, is given by
0.8
a=1+Yg— Y2 +Yi. (20
Z 0.6}
= In this last equation, the dimensionless wave vegtptis
\z/° 0.4} given byy,=k/ky with ky as defined in Eq(13). The nor-
malization conditioru?—vZ=1 is automatically satisfied by
o2k Eqg. (19). From Eqg.(14) we can see that the sole parameters
' of the transformation are the condensate fractjdiy)/N,
0 ) ) \ and the nonlinear constag, .
0 1 2 3 4 We time average the populations of the quasiparticles
E (10° e) statesN, /N=|b,|? as was described above to gii,)/N,

and finally average over angle so that we can produce a

FIG. 4. (a) Condensate fraction plotted against total energy afteone-dimensional plot ofN,)/N. This distribution for four

each individual simulation has reached equilibrium fax,

different simulation energies an@,=10000 is shown in

=10000. The barely discernible vertical lines on each point indi-Fig. 5.

cate the magnitude of the fluctuatiorib) The curve for the same

system, but calculated for the ideal gas.

We can see that the shape of the curves is surprisingly
smooth for each energy, suggesting that the system is in
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equilibrium. The plot of the distribution for any individual whereT=kgT/(Ne,) is the dimensionless temperature.
wave function is scattered about the average. Once equilibrium has been reached for a single simula-
- We have also_detgrmined the fluctuations of the _populaﬁon, we make use of Eq26) to measure the quantify.

tion of the quasiparticle mod'es. The grapd canonlcal enDecomposing the wave functions in some basis and time-
semble for the Bose gas predicts the relationship averaging the populations determing@g,)/N as a function

2_ 2, of the variablek, as is plotted in Fig. 5. This completely
(AN™=(Nig™+(Nig @D specifies the RHS of E@26) and it remains to determine the
for k#0, which in the classical limi{N,)>1 gives quantities on the LHS. _ _
In this section we consider three different methods of ei-
(AN =~(Ny). (22)  ther predicting or measuring the functiep—X. If the basis

o _ we have used for our decomposition is a good one, and our
This is indeed the behavior that we observe. Although we a%a

"y . ol svstem. in thi h rediction fore,— X is correct, then this curve will have the
evolving a microcanonical system, in this case there are sucfl, 1o shane as the RHS of E86). The constant of propor-
a large number of modes that the remainder of the syste

2 - fionally determined by a fitting procedure will then give the
acts as a bath for any individual mode and the result stil y ~ y gp 9
applies. temperaturer.
Before we describe our methods and results, we would
like to note that the quantity we refer to, throughout the

remainder of this paper, as the temperature is the varible
While the data presented in Sec. V indicates that theas determined by the numerical fitting procedures described
PGPE is evolving the system to equilibrium, as yet we haveabove. We have not yet established that this is the true tem-
presented no quantitative evidence. To demonstrate conclperature as defined by thermal equilibrium with a heat reser-
sively that equilibrium has been reached, we need to be abloir. However, we believe that if we were to solve the

to assign @emperatureto the simulations. In this section we ETGPE with ;;(x) acting as a heat bath, then the temperature

measure a temperature for a given simulation by comparingetermined in the coherent region via this method would
the distribution function of the numerical simulations againstagree with the bath temperature.

a predicted energy spectrum.

VI. QUANTITATIVE ANALYSIS OF THE DISTRIBUTIONS

B. Method 1: Bogoliubov theory

A. Expected equilibrium distribution L )
In the limit of large condensate fractidiNg)/N~1, we

The GPE is the high occupatid¢alassical limit of the full  expect the Bogoliubov transformation to provide a good ba-

equation for the Bose field operator, Hd). Therefore, in  sjs. For the homogeneous case the dispersion relation is
equilibrium we expect the mean occupation of méde be  known analytically, and is given by

the classical limit of the Bose-Einstein distribution—i.e., the

equipartition relation h2k?\? LM
er- A= | +(chk)?| , 27)
2m
N = —2T 23
(N = s— ' @3 wherec=(nyU,/m)¥2 is the speed of sound ang is the

) absolute energy of a mode with wave vedtom our dimen-
wherek labels theeigenstatesf the system. In general these sjonless units this becomes

will be some type of quasiparticle mode. Manipulating Eq.

. 1/2
(23), we find that P ~k4+2Cn,<NO>~k2) 29
N .
kgT
SKIL"‘M. (24) . . . .
(Ny) The condensate fraction is determined from the numerical

- _ _ results, and so when the Bogoliubov dispersion relation is
The equilibrium condensate occupation according to the edyalid, we can determine a temperature for the simulations by
uipartition relation will be given by Eq(23) with (Ny) substituting Eq(28) in Eq. (26).

—(Np) ande,—\ (the condensate eigenvajudrom this Results We have carried out this analysis for all the simu-
expression we can solve for the chemical potential lation data. For th€,,=500 case, the measured distributions
are in excellent agreement with the Bogoliubov dispersion
. kgT relation for all energies, and we have been able to extract the
PR (No)" @9 corespondi i i
0 ponding temperature for each simulation.

However, this is not the case for the more strongly inter-
Substituting this result into Eq24), and converting to di- acting systems. Fo€,,=2000, the Bogoliubov relation is a
mensionless units we find good fit only for simulations with E<2000 (Ng)/N
~ ~ =0.75), or for energies above the BEC transition point. For
gk—A :( N _ N ) the C,,= 10000 case, good agreement is found only for the
T (N} (No)/"

T lowest energy simulation witk=5250 and(Ng)/N~0.96.

(26)
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(28), and we must use a more sophisticated theory to predict
the dispersion relation.

Above the transition point, however, there is no conden-
sate and the ideal gas dispersion relation is a reasonable de-
scription of the system.

C. Method 2: Second-order theory

As the occupation of the quasiparticle modes becomes
significant at large interaction strengths, the cubic and quar-
tic terms of the many-body Hamiltonian that are neglected in
the Bogoliubov transformation become important. In REf.
Morgan develops a consistent extension of the Bogoliubov
theory to second order that leads to a gapless excitation spec-
trum. This theory treats the cubic and quartic terms of the
Hamiltonian using perturbation theory in the Bogoliubov
quasiparticle basis. This results in energy shifts of the exci-
tations away from the Bogoliubov predictions of Eg7).

Expressions for the energy shifts of the excitations are
given in Sec. VI 2 of Ref[5]. They have the form

Az =AE3(k) +AE4(K)+AE, (K), (29)

0 5 1.0 15
k (2r/L) whereAE;(K)[AE,(K)] is the shift in energy of a quasipar-
ticle in modek due to the cubidquartio Hamiltonian, and

FIG. 6. Fits of the simulation quasiparticle population data to , = : . . _
the Bogoliubov dispersion relation for two cases. For both graphsAE"(k) describes the shift due to the change in the conden

the solid line is the Bogoliubov curve, while the dashed line is theSate eigenvalue. In the high-occupation limit we find
ideal gas dispersion relation. The temperature is determined by a
least-squares fit to the plot oN({N,)—N/{Ng)), which is shown

as the dots(a) C,= 500, E=500, and N0>/Nf0.929, with a best- (1+a )2
fit temperature from Bogoliubov theory of=0.0175. (b) C, AE4(K)+AE, (k) = —Cn|7<—k2,
=10000, E=5250, and({Ny)/N=0.957, with a best-fit tempera- 1—ag
ture from Bogoliubov theory of =0.018.

(30

S_ample f|_ts of the S|mulgt|on_ data to the Bogoliubov d'Sper'where} is the dimensionless anomalous average, defined by
sion relation are shown in Fig. 6 for cases where the agree-
ment is good(An example of this procedure where the Bo-
goliubov spectrum is not appropriate is given in Fig. 8.

The reason for the limited range of agreement is because
the Bogoliubov transformation diagonalizes only a quadratic ~_ (N +N_p)ay

o Lo k=D, ——— (31

approximation to the full Hamiltonian. It neglects terms that R N(l—aﬁ)
are cubic and quartic in noncondensate operators, assuming
that they are smaltthese are discussed in detail bejoWwhis

is a good approximation for th€,=500 simulations—at . ~ . : i
large condensate fraction the dispersion relation is only The expression foAEs(k) is derived from second-order

i ) ) ! o~y perturbation theory, and is rather complicated. We have
slightly shifted from the noninteracting relatien=k*, and

at smaller condensate fractions the difference is negligible.
Hence we can fit a temperature up to and above the BEC

transition.
For the C,,=2000 case the higher-order terms become A~E3(k):_ZC”'[AEg(k)JrAEg(k)+AE§(k)] (32
important aboveE=2000, and for the strongest interaction —ay

strength ofC,,=10000, they are important for all but the
lowest energy simulation we consider. For the higher-energy
simulations the shape of E¢R6) no longer agrees with Eq. where
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(Ni+Nj)(1—ai—aj+aiak+ ajak— aiajak)z

AES(k)=>, : (33
S N(zi+2—2)(1— a)A(1-a))?
~ N_i+N_D)(a+a+ ag— aja;— aja— ajoy)?
AEg(k):E ( i J)( i j k i & itk j k) ’ (34)
] N(zi+2zj+2)(1- )% (1—a))?
AE;(k):E (Ni—Nj)(l—aj—ak+aiaj+2aiak—a2iajak)2, (35)
j N(Zi—zl-+Zk)(1—ai) (1_C¥J)
|
in whichi=k—j and value of (Ng)/N are determined by the simulations, and the
Bogoliubov relation Eq(28) is used for the energies.
1 ~ (Ngy\ 1 Once the estimated temperatdrg,is determined, we use
ze=y(2+yi) " =e Ca— ) (36 the equipartition Bogoliubov relation for the populations in

Egs.(33)—(35), and then approximate the sums by numerical
integration to calculate the shifts to the levels. We find that
this gives curves that agree on average with those calculated
using the first method, but are much smoother. A comparison
of the two methods is given in Fig. 7.

is another form of the dimensionless energy of migdeith
yk=k/kq as earlier.

1. Calculation of energy shifts

The numerical calculation of the energy shifts is not a
trivial task, and we have used two methods to determine the ) ] o
shifts for our simulations. The first procedure is to calculate For theC,=2000 simulations, the quasiparticle popula-
the shifts directly using the population data from the simulaltions extracted from the simulations are in much better
tions. We therefore, agreement with the energy spectrums from the second-order

(1) Calculate the quasiparticle populatioNg for the last theory than with those from ordinary Bogoliubov theory. We
50 wave functions of our simulation based on a condensaténd that most of the measured distributions for t0g,

2. Results

population(N,), and then average these over time. =2000 case are well described by the second-order theory.
(2) Calculate the energy shifts for mode using these ~Sample results are presented in Fi¢a)8 .
populations as the input. However, this is not the case for ti@3,=10 000 simula-
(3) Average the shifts over angle to give a one-tions. In fact we find that the energy spectrum is shifted in
dimensional function ok. the opposite direction to that inferred from the simulations,
This results in plots of the energy shifts that are somewhat
scattered due to the finite size of the system. The expressions < T2
for the shifts Egs.(33)—(35) contain poles when energy 15

matches occur, and hence the numerical calculation is per-
formed using an imaginary part in the denominator. The size
of this imaginary part does not affect the shape of the curve
in the limit that it is small, but it does affect the amount of o<
scatter in the shifts. We have performed sample calculations <
allowing L to increase while keeping other parameters of the
system constant, and this makes the curve smoother.
The second procedure only makes use of the condensate
fraction and thetotal number of quasiparticles, rather than
the population of the individual levels. By assuming the Bo-
goliubov spectrum is a good estimate of the energidsch
must be true for the perturbation theory to be valide can FIG. 7. The shifts to the Bogoliubov quasiparticle energies for

estimate the temperatuf. using the normalization con- , gifferent simulations. The solid thin curves are calculated via
straint on the populations the first method described in the text using population data ex-
tracted from the simulations, and are hence somewhat noisy. The

(N (Ng) ""rest thick gray curves use the second method, assuming equilibrium
> N - N + = (37)  populations given by Bogoliubov theory and calculated by numeri-
: k=0 &= A cal integration. The lower curves are for tig=2000, E=4000

o simulation, and appear to be approximately gaplesk-a®. The
where we have used the approximatiar=\ that is valid  upper curves are for th&,= 10 000, E= 6000 simulation, and ex-
when there is a condensate present. The LHS as well as tlnbit a gap ak—0.

10

(4]

o

0 5 1‘0 15
k (2n/L)
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For the results of Fig. 8 witiC,,;=2000, E=4000 this pa-
rameter is 0.14 and so we are beginning to probe the bound-

ary of validity of the theory. At higheE the shifts become of
the order of the unperturbed energies, and hence the results
are unreliable. In this region even higher-order terms are
important, and the second-order theory can no longer be ex-
pected to give good results. From our calculations it seems
that this parameter should k€0.2 for the theory to be valid.

We would like to emphasize, however, that the GPE suf-
fers no such limitations. It is nonperturbative and thus we
expect that it will be valid all the way through the transition
region, as long as the high-occupation number condition is
satisfied.

4. Gaplessness in a finite system

In the course of this work it has become apparent that
while the second order theory is gapless for infinite systems,
this is not the case for systems such as ours with a finite
momentum cutoff. The individual terms in the perturbation
expansion given by Eq$30) and(32) contain contributions
that are proportional to &/(infrared divergentand a con-
stant(gap in the lowk limit. For a homogeneous system
these terms cancel exactly when the upper limit of the inte-
grals is infinite, and this leaves a gapless spectfG7].
However, in a system with a momentum cutoff these terms
do not exactly cancel, with the result that there is a gap in the
k (2nr/L) predicted excitation spectrum &s-0.

Briefly, this gap arises because the energy shifs,(k)

FIG. 8. Fits of the simulation quasiparticle population data to =~ . L~ .
dispersion relations. The dots are a plot bif (N,) —N/(Ng)), the +AE, (k) of Eq. (30) only involve the quantityx. This is

solid curve is for the dispersion relation predicted by second-ordepbt"’"ned from Eq(31) via a sum over all states bglow the
theory, and the dashed curve is the dispersion relation predicted lﬁptOﬁ where the Summan.d gepends only on _a single wave
Bogoliubov theory.(a) C,=2000, E=4000, and(No)/N=0.279. ~ Vector. In contrast the shifAEs(k) of Eq. (32) involves a
Second-order theory gives a good fit to the numerical results with UM over states where the summand depends on two wave
best-fit temperature of =0.201. (b) C,=10000, E=6000, and ~Vectorsi andj (related by momentum conservatjdooth of
(No)/N=0.841. The shape of the second-order theory dispersioNvhich must be below the cutoff. This difference in the re-
relation does not agree with the population data from the simulasStrictions on the summations leads to a lack of complete
tion, and the gap is apparent &s-0. The gray curve plots the Ccancellation in the corresponding shifts at low energy and the
energies as determined by the method described in Sec. VI D with appearance of a gap in the excitation spectrum.

best-fit temperature 6f =0.0726. For the homogeneous gas, we can calculate the size of the
gap predicted by the second order theory analytically. Re-
placing the summations by integrations, we find that the
leading order contribution to the energy shift in the lirkit
—0is

and that there is an energy gap kor-0. The reasons for this
are discussed below.

3. Breakdown of perturbation theory

The validity of the second-order theory is constrained by A _( kT )(n a3)1’2( 8)1’2 €x
k™ 0

the requiremen{s] . yk(2—+y§) +0(yk),

(40)

NoUo

w

(npa®)¥?<1, (39

B
(noUo where y=k/k, as before and/.=k./ky, wherek; is the
momentum cutoff. In the limik— 0 we havee,xy, and so

wheren, is the condensate density. This corresponds in ouf € tends to a constarithe gap. The size of the gap tends

dimensionless units to to zero as the momentum cutoff tends to infinity but oth-
erwise it is finite. We stress that E10) is only the lowk
7 c U2 limit of the exact result. For our simulations there is a mini-
_(_“') 1 (399 mum wave vector in the problem so it is possible for the
(87)32\(Ng)/N terms of ordery, to be larger than the gap contribution given
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above. This is the case for the simulations with<2000, the second-order theory cannot be used to calculate the en-

wherey. is reasonably large and the gap is therefore small€rgy shifts.

The result of Eq(40) contains the small parameter that  Therefore, we attempted another method to determine the
controls the validity of the second-order theory in the usuaRbsolute energy of each quasiparticle level. If we are using a
case where there is no momentum cufoff Eq.(38)]. How-  good basis, then on a short-time scale the quasiparticles
ever, the result also depends explicitly on the cukpfso in ~ should be independent, with amplitudes evolving according
this case there is a second parameter in the theory. For pef
turbation theory to be valid we require that the predicted
energy shifts are small compared to the unperturbed energies,
i.e., thatAe, /e, <1. We therefore obtain a second criterion

for the validity of the second-order theory which is Thus by measuring the gradient of the phase of each quasi-
particle we can determine its energy.

2 To determine the energy spectrum for a single simulation,
( kgT )(n as)l/z(ﬁ) 1 <1 (477  Our numerical procedure was as follows.
noUo, * ° Ty (2+ yﬁ) ' (1) Take the last 50 wave functions saved for a simulation
once it has reached equilibrium, and evolve each of these
individually for a very short period. One hundred wave func-
'tions are saved for each of the 50 simulations.
~ , ) L (2) Transform the wave functions into the quasiparticle
=2000, E=4000 simulations the left-hand side is 0.04 for paqjs and measure the energy of each quasiparticle, deter-
k=2m. In this case the gap is negligible and the dominantmined by a linear fit to the phase of each amplitude over all
contribution to the energy shifts comes from the terms ofl00 wave functions.
orderyy in Eq. (40). The small parameter of the theory is  (3) Average over all 50 energy spectrums to give a single
therefore given by EQq.(38). However, for the C,  three-dimensional spectrum.
=10000, E=5250 simulations the left-hand side is of order  (4) Finally, average over angle to give a one-dimensional
0.12. In this case the gap is not negligible and we cannot usenergy spectrum.
second-order theory to define a temperature. This gives us a dispersion relatiega— X which can then
This result is somewhat surprising since, even for a conpe compared to a plot ofN/(N,)—N/(No)). If the shapes of
densate fraction of 80% the small parameter of B8) is of  the curves agree, then a temperature can be determined via
order 0.07, and it does seem reasonable to expect that peFq. (26) as in the earlier sections.
turbation theory should be applicable. This does not appear We first tested this procedure on tBg = 2000 simulation
to be the case, however, and we have so far been unable geries, and found that this method was in good agreement
determine the root cause of this problem. It is worth notingwith the second-order theory calculations, the two ap-
that the numerical simulations themselves have no diffiCU|-proaches assigning the same temperature to the various
ties in this regime and do not predict a gap at low momensjmulations.
tum. This is because the GPE is nonperturbative and indeed we then moved onto th€,=10000 simulations. We
this is one of the main reasons for using it to study thefound the surprising result that not only did the shape of the
properties of Bose condensed systems at finite temperaturglots of the curves fog, /kgTs and (1N,— 1/N,) agree for
The disagreement between the second-order theory anfle lower-energy simulations where the parameter of Eq.
the numerical simulations is illustrated in Figh8 where it (38) was small, it also agreed when it was of the order of,
can be seen that even despite the gap, the shifts the theognd greater than one. This was unexpected, as it would seem
predicts are in the wrong direction in comparision with thejikely that near the phase transition when interactions are

by (t) =by(to)exd —ie(t—to)/7]. (42

This result should hold for all momenta in the simulations
and in particular for the smallest value gf. For theC,,

simulations. strong that the Bogoliubov quasiparticle basis would no
longer be sufficiently good for this method to be accurate. An
D. Method 3: Nonperturbative determination example of the energy spectrum and its fit to the population

of the temperature data is shown in Fig. ®).

. As a further test we carried out the same procedure de-

~ The failure of second-order theory for th&,=10000  gcriped above, but using the plane-wave basis rather than the
simulations caused us to investigate other possible methogg,goliubov quasiparticle basis. Intuitively it would seem
of determining the temperature once the system was in equinat this would no longer work—but we found that not only

librium. This has led to what seems to be a method of deteryiq it give the same temperatures as the quasiparticle basis
mining the temperature that does not rely on perturbationoy the C,,= 10 000 simulations, it also agreed with the tem-

theory, and we describe it here. peratures determined using second-order theory foiQhe
We found earlier that the Bogoliubov spectrum gave a_— o000 simulations.

good prediction of the populations of the quasiparticle levels
for the lowest energy simulation in th€,=10000 series

with E=5250. Therefore, it seems reasonable that the Bogo-
liubov basis should remain a good one for perturbation  Using the three methods described in the preceding sec-
theory for the next simulation witle=5500, even though tion, we have been able to measure an equilibrium tempera-

VII. TEMPERATURE DEPENDENCE
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FIG. 9. Condensate fraction versus temperature for the PGPE co 0:2 04
system withk<<15x 2/L for four different interaction strengths. ;Iv_
The open circles are fd€,,=10 000, crosses fa€,,= 2000, solid .
dots forC,, =500, and the solid line is for the ideal gas. The shift in 4 x 10
the transition temperature is positive with increasing interaction
strengthC,,, . (b) °
: o , 3
ture forall simulations in this paper. We are confident of the °

dE/dT

results determined from both Bogoliubov and second-order
theory; however unfortunately, we do not have any results to
compare with for the strongly interacting regime where the ?
nonperturbative method was used. We can only conclude that
the temperatures extracted using this method agree numeri-
cally with the other two methods in the weakly interacting
regime, and that the values obtained seem reasonable and
basis independent elsewhere. We intend to test this method
further in the future using a numerical “ideal gas thermom- 0 0.2 0.4
eter.” T

In this section we move on to consider how other system
properties such as condensate fraction, specific heat, and Vor,

FIG. 10. Graphs relating to the specific heat of the Bose gas in
PGPE model. The open circles are @&j=10 000, crosses for
ticity vary with the temperatur@. C,=2000, solid dots forC,=500, and the solid line is for the
ideal gas.(a) Plot of the energy versus temperature for all four
interaction strengths considerdt) Plot of the specific heat for all
four interaction strengths.

It is usual when considering how the condensate fraction
varies with the other properties of the system to plot iting on the direction of the shifte.g., see Ref.23] and ref-
against temperature, rather than against energy as we hageences within For the PGPE system described in this paper
done in Fig. 4. We are now in a position to present this databy Eq. (6), we can see from Fig. 9 that the shift is positive,
and it is displayed in Fig. 9. We can see that a major effect ofilthough as yet we have made no effort to quantify this. This
increasing the nonlinearity is to increase the condensate fragvould require many more simulations to be run, especially in
tion at any given temperature. This can be understood in ththe transition region, and for the temperatures to be deter-
Bogoliubov regime by considering the shape of the dispermined more accurately.

A. Condensate fraction

sion relation. It seems plausible that future simulations of the full FT-
The Bogoliubov dispersion relation ER8) shows that GPE (5) or approximations to it could be used to quantita-
for a given condensate fraction, a larger valueGyf will tively measure the shift in the critical temperature for the

result in an increase in the energy of any médelative to  homogeneous Bose gas when the lowest-energy modes are
the condensate. This leads directly to the observation that faufficiently classical. However, the terms coupling the FT-
a fixed condensate fraction, an increase in the nonlinearitPE to the effective bath(x) may be difficult to implement
must lead to an increase in the temperature. However, asomputationally, and at the present time we are unsure how
(No)/N—0 in the transition region, the energy-momentumto proceed in this direction.
relationship tends towards the ideal gas dispersion relation,
and therefore the transition temperature will not be greatly B. Specific heat
shifted over a wide range of nonlinearities. , . .

There has been some discussion recently in the literature N Fig- 10@ we plot the energy of the simulations due to
about the shift in the transition temperature for the homogeeXxcited states E—Ey) versus temperature, wherg&,
neous interacting Bose gas, with some authors even disagree-C,,/2 is the energy of the system &t=0. We can see that
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at low temperatures for all interaction strengths this is afunction. This would be a somewhat complicated procedure
straight line, with a slope of about 13 996—the number ofnumerically, and so we have devised a different technique.
excited modes in the system. This is as expected—the aver- We increase the spatial resolution of our wave functions
age energy contained in a given mddes to be 128 128%x128 points, so that the grid spacing is
B smaller than the vortex healing lenggh defined by
= (Np~ T - = 5
(En=—ex==—=ex=T, (43) h
Ex— M

2mé?

:n0U0. (45)

when there is a condensate present and0~. At higher ~ We do this by extending the wave function knspace, and
temperatures, however, the energy rises above the equiparthen Fourier transforming to real space. This does not require
tion prediction for nonzero interaction strendily, and this ~ any extra information, as fdt>15x2x/L we havec,=0.
is an indication that either there are no longer independenive then count the number of vortex lines passing through
modes in the system or more degrees of freedom agfmar everyxy plane, and take the average over all planes. It seems
example, by the creation of vortiges that this is a reasonable measure of the vorticity of the wave

The derivative of this curve with respect to temperaturefunction, and it should be similar to the measurement of the
gives the specific heat, and this quantity is plotted in Figlength of the vortex structures discussed above.
10(b). The messy nature of this plot is due to small uncer- We have analyzed the data from the simulations using this
tainties in the measured temperature which are amplifiegprocedure. We find that when the energy of the simulation is
when the temperature difference between successive simulaufficiently high that there are vortices present, the time evo-
tions is calculated. However, the plot does display an interiution of the vorticity is a good indicator for when the system
esting feature. For nonzero interaction strength, the specifiteaches equilibrium. As is the case for the condensate popu-
heat appears to reach a peak at the transition temperatutgfion, the vorticity tends to an equilibrium value which fluc-
and the height of this peak increases with the value ofuates by a small amoufinuch smaller than the fluctuations
C,—somewhat reminiscent of the lambda transition in su4n the condensate population
perfluid helium. Once again, further simulations and more A plot of the vorticity against system energy is shown in
accurate determination of the temperature are required fdrig. 11(a) for the C,;,=10000 simulation(the curves are
quantitative investigation of this effect. This will be the sub- qualitatively similar for the other nonlinearitied\Ve see that
ject of future work. there is a minimum energy required for vortices to be present
in the system at equilibrium. Also, as we reach this energy
the plot of condensate occupation versus energy appears to
dip. This same behavior is observed for tg=500 and

A further quantity of interest is the vorticity of the system 2000 cases, but it occurs at a higher condensate fraction, and
in equilibrium. It has been argued that vortices may be im+s not as pronounced. There is no corresponding departure
portant in the superfluid transition dHe, reducing the su- from linearity in the ideal gas case, as was seen in Rig. 4
perfluid density near the transition poif4]. With this in A plot of the number of vortex lines versus temperature
mind, we have studied the presence of vortex lines in oufor all the simulations is shown in Fig. (d), and this dis-
simulations. Recently Berloff and Svistunp®5] have con-  plays a large increase in the vorticity near the transition tem-
sidered the evolution of topological defects in the evolutionperature forC,,=10000. A more in-depth analysis of this

C. The role of vortices

of a Bose gas from a strongly nonequilibrium state. behavior will be carried out in a subsequent extension of this
A vortex is a topological excitation, characterized in awork.
wave function by Finally, a three-dimensional visualization of the network
of vortex lines is shown in Fig. 12 for three simulation en-
V Ar x)]-dl=27n, 44 ergies for theC,=10000 _simulations. Eacr_] point corre-
%c 9Ly)] (44 sponds to where a vortex line was detected in the horizontal

planes, and for the lowest two energies several vortex rings

whereC is a closed contour, andlis a nonzero integer, the are clearly visible.

sign of which indicates the circulation of the vortex. The
continuous variation of the phase from zero to2around
such a contour implies that there must be a discontinuity in  We have presented what we believe is compelling evi-
the phase within the loop. The only way that this can bedence that the projected Gross-Pitaevskii equation is a good
physical is for the wave function to have zero amplitude atapproximation to the dynamics of the classical modes of a
the spatial position of the phase singularity. Bose gas. We have described how to carry out the projection

In a two-dimensional wave function the center of vorticestechnique in the homogeneous case with periodic boundary
are zero-dimensional points, and they can be easily countetbnditions, and have shown that starting with a randomized
to give a measure of the vorticity of the system. However, inwave function with a given energy, the projected GPE
three dimensions vortices form lines and rings, and thesvolves towards an equilibrium state. We have analyzed the
equivalent quantity of the 2D measure of vorticity would be numerical data in terms of quadratic Bogoliubov theory, and
to calculate the length of all vortex structures in the wavealso the gapless, finite temperature theory of Ref.in the

VIIl. CONCLUSIONS
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FIG. 11. The presence of vortices in the simulatidias A plot
of vorticity for the C,;=10000 simulation series. The number of
vortex lines per plane are indicated by open circles with the scale on
the left vertical axis, and the condensate fraction by dots with the
scale on the right vertical axigb) The number of vortex lines per
plane plotted against temperature for all three simulation series.
Open circles are€C,,,= 10000, crosses ai€,=2000, and dots are
C,=500.

classical limit. We have found that both the occupation and
energies of the quasiparticles agree quantitatively with the
predictions when these theories are valid.

Outside the range of perturbation theory we have pro- FIG. 12. Avisualization of the vortex network in equilibrium for
posed another technique that has allowed us to determinetige case ofC,,= 10 000.(a) E=7000, (b) E=8000, (c) E=9000.
temperature for the PGPE simulations in equilibrium. ThisEach point corresponds to where a vortex line was detected in the
method agrees with the perturbative methods when they aforizontal plane. Several vortex rings are visible in the figures.
valid. Using this definition, we have found that increasing
the nonlinearityC, leads tq an increase in both the transiti_o_n ACKNOWLEDGMENTS
temperature and the specific heat of the system at the critical
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