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Simulations of thermal Bose fields in the classical limit
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We demonstrate that the time-dependent projected Gross-Pitaevskii equation~GPE! derived earlier@M. J.
Davis, R. J. Ballagh, and K. Burnett, J. Phys. B34, 4487~2001!# can represent the highly occupied modes of
a homogeneous, partially-condensed Bose gas. Contrary to the often held belief that the GPE is valid only at
zero temperature, we find that this equation will evolve randomized initial wave functions to a state describing
thermal equilibrium. In the case of small interaction strengths or low temperatures, our numerical results can
be compared to the predictions of Bogoliubov theory and its perturbative extensions. This demonstrates the
validity of the GPE in these limits and allows us to assign a temperature to the simulations unambiguously.
However, the GPE method is nonperturbative, and we believe it can be used to describe the thermal properties
of a Bose gas even when Bogoliubov theory fails. We suggest a different technique to measure the temperature
of our simulations in these circumstances. Using this approach we determine the dependence of the condensate
fraction and specific heat on temperature for several interaction strengths, and observe the appearance of vortex
networks. Interesting behavior near the critical point is observed and discussed.
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I. INTRODUCTION

The observation of Bose-Einstein condensation~BEC! in
dilute alkali-metal gases@2–4# heralds a new era in the stud
of quantum fields. It offers a unique opportunity to carry o
experiments in the laboratory for which theoretical calcu
tions beginning from a microscopic model of the system
tractable. However, such calculations are fraught with di
culties at finite temperatures. While equilibrium perturbati
theories have had much success@5–7# dynamical calcula-
tions often require severe approximations to be made.

In Ref. @1# we developed an approximate formalism
describe the dynamics of a thermal Bose condensate b
on the Gross-Pitaevskii equation~GPE!. This description is
valid when the low-lying modes of the system are classic
satisfying the criterionNk@1. This is analogous to the situ
ation in laser physics, where the highly occupied laser mo
can be well described by classical equations. We procee
by dividing the field operator into a classical region rep
sented by a wave functionc(x) describing the condensat
and its coherent excitations, with the remainder of the fi
described by the quantum operatorĥ(x). We derived an
equation of motion forc(x) that we called the finite tem
perature Gross-Pitaevskii equation~FTGPE!.

The FTGPE is a rather complicated equation, howe
and in Ref.@8# we briefly described the first results from th
simpler projected Gross-Pitaevkskii equation~PGPE! ob-
tained by neglecting the operatorĥ(x). These results dem
onstrate that the GPE alone can represent thermal B
gases. In this paper we elaborate on these results and
scribe our method in more detail. We also consider the ef
of strong particle interactions on the thermal distributio
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and investigate the appearance of vortices in our simulatio
The use of the dynamical GPE at finite temperature w

originally proposed by Svistunov, and co-workers@9–12#.
Despite this suggestion first appearing in 1991, there h
been relatively few numerical studies based on this appro
Damleet al. have performed calculations of the approach
equilibrium of a near ideal superfluid@13#, while Marshall
et al. @14# carried out a qualitative study of evaporative coo
ing using a two-dimensional~2D! GPE. References@15–20#
also use classical methods to represent thermal B
condensed systems. Similar approximations to other qu
tum field equations have been successful elsewhere@21#.

This paper is organized as follows. In Sec. II we give
brief derivation of the finite temperature Gross-Pitaevs
equation. In Sec. III we describe and justify the simplific
tion of the FTGPE to the projected Gross-Pitaevskii eq
tion, before describing the simulations we have carried ou
Sec. IV. Section V presents the qualitative evidence that
simulations have reached equilibrium, while Sec. VI carr
out a quantitative analysis of our numerical data. Section
discusses the behavior of the condensate fraction, spe
heat, and vorticity of the system with temperature, before
conclude in Sec. VIII.

II. OUTLINE OF FORMALISM

A full derivation of the FTGPE and a discussion of th
physics described by each of the terms can be found in R
@1#. Here we outline the derivation beginning with the equ
tion of motion for the Bose field operator

i\
]Ĉ~x!

]t
5ĤspĈ~x!1U0Ĉ†~x!Ĉ~x!Ĉ~x!, ~1!

whereU054p\2a/m is the effective interaction strength a
©2002 The American Physical Society18-1
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DAVIS, MORGAN, AND BURNETT PHYSICAL REVIEW A66, 053618 ~2002!
low momenta,a is thes-wave scattering length, andm is the
particle mass.Ĥsp is the single-particle Hamiltonian define
by

Ĥsp52
\2

2m
¹21Vtrap~x!, ~2!

where Vtrap(x) is the external trapping potential, if any
present.

The route to the usual GPE is to assume that the full fi
operator can be replaced by a wave functionc(x)—i.e., that
all quantum fluctuations can be neglected. We proceed
stead by defining a projection operatorP̂ such that

P̂Ĉ~x!5 (
kPC

âkfk~x!, ~3!

where the regionC is determinedby the requirement tha
Nk[^âk

†âk&@1, and the set$fk% defines some basis i
which the Hamiltonian is approximately diagonal at t
boundary ofC. For these modes, the quantum fluctuati
part of the projected field operator can be ignored, and so
replaceâk→ck and write

c~x!5 (
kPC

ckfk~x!. ~4!

Defining the operatorQ̂5 1̂2P̂ andQ̂Ĉ(x)5ĥ(x), oper-
ating on Eq.~1! with P̂ and taking the mean value results
what we call the finite temperature GPE,

i\
]c~x!

]t
5Ĥspc~x!1U0P̂$uc~x!u2c~x!%

1U0P̂$2uc~x!u2^ĥ~x!&1c~x!2^ĥ†~x!&%

1U0P̂$c* ~x!^ĥ~x!ĥ~x!&12c~x!

3^ĥ†~x!ĥ~x!&%1U0P̂$^ĥ†~x!ĥ~x!ĥ~x!&%.

~5!

This equation describes the full dynamics of the coher
region and its coupling to an effective heat bath described
ĥ(x). In general, the nonequilibrium evolution depends
the coupling between these two regions and the exchang
energy and particles that this allows. The FTGPE must
complemented by an equation of motion forĥ(x) and in
principle this can be obtained using a form of quantum
netic theory.

The only approximation that has been made in the d
vation of the FTGPE is that the modes represented byc(x)
must satisfy the criterion of classicality, that isNk@1. The
FTGPE is a nonperturbative equation, and therefore we
pect that it will be valid in the region of the phase transitio
as long as only the highly occupied modes are treated. T
is perhaps a misperception in the BEC community that
GPE is only valid atT50. However, it is well known that
close to the phase transition a classical description of
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long length scales involved is completely appropriate. Thi
exactly what the GPE describes, and in fact it has been u
as a model of phase transitions in other areas of conde
matter physics. Indeed our model has the same energy f
tional for these modes as used in the classical renorma
tion group theory of the superfluid phase transition. It the
fore seems reasonable to expect that the sa
approximations are valid in this case.

The physical processes described by the various term
Eq. ~5! are discussed in detail in Ref.@1#. In this paper, we
concentrate on a simplification of the FTGPE which is effe
tively a model of a restricted system. This allows us to de
onstrate some of the properties of the GPE without having
solve the more complicated equation.

III. THE PROJECTED GPE

In this paper, we wish to show that the GPEalone can
describe evolution of general configurations of the coher
regionC towards an equilibrium that can be parametrized
a temperature. We therefore ignore all terms involvingĥ(x)
in Eq. ~5! and concentrate on the first line,

i\
]c~x!

]t
5Ĥspc~x!1U0P̂$uc~x!u2c~x!%, ~6!

which we call the projected GPE. Although Eq.~6! is com-
pletely reversible, it is well known that deterministic nonlin
ear systems with only a few degrees of freedom exhibit c
otic, and hence ergodic behavior@22#. If many modes are
occupied, the projected GPE contains many degrees of f
dom and it is therefore reasonable to expect it to evolve
equilibrium ~except for specially chosen initial condition
such as eigenstate solutions!.

The projected GPE describes a microcanonical syst
However, if the regionC is large, then its fluctuations in
energy and particle number in the grand canonical ensem
would be small. Hence we expect the final equilibrium st
of the projected GPE to be similar to that of the finite te
perature GPE coupled to a bathĥ(x) with the appropriate
chemical potential and temperature. The detailed nonequ
rium dynamics of the systemwill depend on the exchange o
energy and particles betweenC and the bath—however, we
leave the coupling ofc(x) and ĥ(x) to be addressed in fu
ture work.

A. The projector

The spatial representation of the projection operation
written as

P̂$F~x!%5 (
kPC

fk~x!E d3x8fk* ~x8!F~x8!, ~7!

and this operation must be carried out numerically ev
time we calculate the nonlinear term in the PGPE. This i
very time consuming operation in general, taking many tim
longer than calculatinguc(x)u2c(x) itself.
8-2
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SIMULATIONS OF THERMAL BOSE FIELDS IN THE . . . PHYSICAL REVIEW A 66, 053618 ~2002!
The operation is much simpler numerically if we use
plane-wave basis in our projector

fk~x!5
exp~ ik•x!

AV
, ~8!

whereV is the volume of our system. In this case Eq.~7!
becomes simply the application of a forward Fourier tra
form to our functionF(x), followed by an inverse Fourie
transformation that includes only the modes in the cohe
region. Thus our numerical procedure is

P̂$F~x!%5OIFFT$P~k!OFFT@F~x!#%, ~9!

whereOFFT andOIFFT refer to the forward and inverse fa
Fourier transform operations respectively, andP(k) is the
representation of the projectorP̂ in Fourier space. There ar
very efficient routines available to carry out FFTs, and so
find that it is extremely advantageous numerically to defi
our projector in the plane-wave basis.

B. Implications

For any nonperiodic trapping potential, the use of a pla
wave basis is at odds with our requirement that the b
must approximately diagonalize the Hamiltonian at t
boundary of the regionC. In fact, it may not even satisfy thi
requirement for a periodic potential if the boundary of t
coherent region occurs at a low enough energy.

If we consider a homogeneous system, however,
plane-wave basis will always satisfy our requirements.
this case the effect of a condensate on the excitations o
system is simply to mix modes of momentap and2p. Thus
even if the Hamiltonian is not diagonalized at the bound
of C, we can still apply the projector cleanly in Fourie
space. For these reasons, the simulations that we prese
this paper are for the homogeneous Bose gas. We inten
address the issue of projectors for the trapped Bose ga
future work.

A direct advantage of simulating the homogeneous sys
is that the condensate occupation is readily identified as
k50 component of the wave function. This is in contrast
the trapped case, where the condensate mode changes
the condensate fraction. In general the condensate frac
must be determined by diagonalization, which can be a v
time consuming procedure@19#.

IV. SIMULATIONS

We have performed simulations for a fully thre
dimensional homogeneous Bose gas with periodic bound
conditions. The dimensionless equation we compute is

i
]c~ x̃!

]t
52¹̃2c~ x̃!1CnlP̂$uc~ x̃!u2c~ x̃!%, ~10!

where the normalization of the wave function has been
fined to be
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E d3x̃uc~ x̃!u251. ~11!

The nonlinear constant is

Cnl5
2mNU0

\2L
, ~12!

whereN is the total number of particles in the system, andL

is the period. Our dimensionless parameters arex̃5x/L,
wave vectork̃5kL, energy«̃5«/«L , and timet5«Lt/\,
with «L5\2/(2mL2).

A. Parameters

The two parameters that determine all properties of
system are the projectorP̂ and the nonlinear constantCnl .

1. ProjectorP̂
We have chosen a projection operator such that all mo

included in the simulations haveuku,1532p/L, which en-
ables us to use a computationally efficient numerical grid
32332332 points. This means that 13 997 modes are
cluded in the system.

Grid size and aliasing. The nonlinear term of the GPE ca
generate momentum components up to three times la
than those which exist in the original wave function. Thus
would seem that calculating the termuc(x)u2c(x) on a grid
only slightly larger than the projector would cause proble
with aliasing. The correct procedure would be instead to c
culate this term on a grid size of 96396396 points before
performing the projection operation.

To check the effect of grid size we have performed sim
lations where the nonlinear term was calculated on grids
size 32, 64, and 96 points, and found that there is no dif
ence in the equilibrium properties of the system. The deta
dependence of the condensate population during evolutio
different in detail for each size grid, but follows the sam
average curve. The same behavior is observed when ad
ing the accuracy parameter of our adaptive step size a
rithm for evolving the GPE.

We attribute this behavior to the deterministic chaos
hibited by the system. Any small numerical error is even
ally magnified such that the system follows a quite differe
microscopic path through phase space, although the resu
macroscopic~average! properties are unaffected.

2. Nonlinearity Cnl

We note that the choice of the nonlinear constant de
mines only the ratio ofNU0 /L. This means that for a given
value of Cnl , we can choose the parametersN, U0, and L
such that our conditionNk[Nucku2@1 is always satisfied for
a given physical situation.

We have performed three series of simulations with n
linearities ofCnl5500, 2000, and 10 000. The highest val
of Cnl was chosen such that all the states contained in
calculation are phononlike for a large condensate fracti
8-3
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DAVIS, MORGAN, AND BURNETT PHYSICAL REVIEW A66, 053618 ~2002!
The boundary between phononlike and particlelike states
the homogeneous gas is

\2k0
2

2m
5n0U0 , ~13!

where we have definedN0 to be the condensate numb
within the volumeL3, and thusn05N0 /L3 is the condensate
density. Converting Eq.~13! to dimensionless units we fin
that

k̃05ACnl

N0

N
, ~14!

and therefore for a condensate fraction ofN0 /N51 we have

Cnl510 000→ k̃0'15.932p,

Cnl52000→ k̃0'7.1232p,

Cnl5500→ k̃0'3.5632p.

We find that computations with smaller values ofCnl take
comparatively longer to reach equilibrium. This is becau
the equilibration rate is approximately proportional toCnl

2 ,
whereas the minimum time step allowed for a given accur
in the numerical integration of the PGPE only increas
slowly with decreasingCnl .

To give an indication of how these dimensionless para
eters compare to experimental setups, forCnl510 000 we
can choose87Rb atoms withN51.83106 andL'26 mm to
give a number density of about 1014 cm23—similar to cur-
rent experiments on BEC in traps.

B. Initial wave functions

We begin our simulations with strongly nonequilibriu
wave functions with a chosen total energyẼ. We construct
these by populating the amplitudes of the wave funct
componentsck in the expansion

c~x,0!5 (
kPC

cke
ik•x. ~15!

The populationsucku2 are chosen such that the distribution
as flat as possible, while the phases of the amplitudes
chosen at random@12#.

The total energyẼ is a constraint on the distribution o
amplitudes. The energy of a pure condensate isẼ05Cnl/2,
all of this being due to interactions—the kinetic energy
zero. To have a wave function with an energy not mu
larger thanCnl/2, the occupations of thek̃50 state and the
k̃52p states cannot be equal.~We use the notationk̃[uk̃u.!
Therefore, for the lowest energy simulations the initial co
densate population is necessarily larger than the excited
populations.

To ensure that the initial wave functions are sufficien
randomized, we enforce the condition that all 123 states w
05361
or

e

y
s

-

n

re

h

-
ate

th

k̃<332p must have some initial population, while all othe
components may be unoccupied. For low energies, when
distribution including the condensate cannot be totally fl
we keep the populations of the components with 1< k̃/2p
<3 equal, and adjust the condensate population such tha
wave function has the energy we require. An example of t
situation is shown in Fig. 1~a! for the Ẽ57000 initial wave
function in theCnl510 000 simulation series.

For simulations with a sufficiently high total energyẼ
that the inner 123 components may have equal populat
we continue to add further shells of higherk to our wave
function. The amplitudes of the inner components are re
justed to maintain the required normalization. This cau
the energy of the system to increase monotonically with e
new shell until we find two wave functions that bound t
energy we are looking for, differing only in their outermo
shell. We then adjust the population of the outermost sh
downwards until we reach the required energy.

This procedure is necessary due to the nonlinearity of
problem. In the case of the ideal gas (Cnl50), we can cal-
culate the kinetic energy~and hence the total energy! of the
wave function simply by knowing the distribution ofucku2,
via

Ekin52
\2

2mE d3x c* ~x!¹2c~x!,

5
\2

2m (
k

ucku2k2. ~16!

However, forCnl.0 we must also add the interaction ener
of the wave function to the total energy. This is,

Eint5
U0

2 E d3xuc~x!u45
U0

2 (
pqmn

cp* cq* cmcndp1q2m2n ,

~17!

and depends nontrivially on the$ck%.
Further images of initial- and final-state wave functio

are shown in Fig. 1 ink space, and Fig. 2 in real space.

C. Evolution

The PGPE is evolved in the interaction picture, using
fourth-order Runge-Kutta method with adaptive step size
termined by estimating the fifth-order truncation error. T
acceptable relative truncation error was set to be 10210 for
all components with an occupation of>1024N0 /N. This
resulted in typical time steps as presented in Table I, wh
could be integrated in a reasonable time on a modern w
station.

We evolve the simulations for at least twice as long a
takes for the system to reach equilibrium, based on the
servation of the behavior of the condensate fraction~see Sec.
V!. The time period for each value ofCnl is also given in
Table I. Thus the longest of these simulations required;5
3105 time steps.
8-4
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V. EVIDENCE FOR EQUILIBRIUM

Although the PGPE is completely reversible, the fin
state wave functions displayed in Figs. 1 and 2 indicate
the simulations have evolved the system to an apparent e
librium state. Thek-space distributions have evolved fro
initially being flat to a form that is peaked at the center, a
tails away towards the edges. Also, there is a smoothing
of both the phase and density profiles of the real-space w
function. After a certain time of evolutionteq, the plots for
the wave functions appear to be isomorphic fort.teq.

We would like to note that the equilibrium properties d
pend only on the total energy and momentum of the ini
wave function—they are independent of the shape of
initial distribution ink space. We have performed simulatio
with nonspherical initial wave functions, and found that th
evolve to a spherical equilibrium state. Also, as the G
conserves momentum, for the condensate to form in thk
50 mode the initial distribution must have zero total m
mentum. We have performed simulations where the ini
distribution had a finite momentum, and observed the c
densate to form in a nonzero momentum state as expec

To determine the properties of the system at equilibriu
in theory we should carry out many different simulatio
each with the same initial populations but with differe
choices of the initial phases, and then take the ensem
average. However, this is an extremely large computatio
task. Instead, we assume the ergodic theorem applies,
that the time average over the evolution of a single system

FIG. 1. Two-dimensional slices of wave functions through t

kz50 plane in momentum space for theCnl510 000, Ẽ57000
simulations.~a! Base 10 logarithm of thek-space wave function a
t50. ~b! Base 10 logarithm of thek-space wave function att
50.2 once the system has reached equilibrium.
05361
-
at
ui-

d
ut
ve

l
e

E

l
-

d.
,

le
al
ch
at

equilibrium is equivalent to the ensemble average over m
different systems. We therefore perform a time-average o
the last 50 wave functions saved, all witht.teq.

A. Condensate occupation

Strong evidence that the simulations have reached e
librium is provided by the time dependence of the cond
sate population. For all simulations this settles down to
average value~dependent on the energyẼ) that fluctuates by
a small amount. The initial time evolution of the condens
fraction for five different energies withCnl510 000 is shown
in Fig. 3.

The average condensate occupation in equilibrium for
simulations for theCnl510 000 case are presented in Fi

FIG. 2. Two-dimensional slices of wave functions near thez

50 plane in real space for theCnl510 000, Ẽ57000 simulations.
~a! Base 10 logarithm of the real-space wave function att50. ~b!
Base 10 logarithm of the real-space wave function att50.2 once
the system has reached equilibrium.

TABLE I. The typical minimum and maximum time steps fo
the simulations. The minimum is for high-energy simulations, a
the maximum is for low-energy simulations.

Cnl

Minimum time step
~units of 1026)

Maximum time step
~units of 1026)

Length of
evolutiont

500 4 6 2.0
2000 1.6 4.4 0.4
10000 0.45 1.2 0.2
8-5
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4~a!. The fluctuations of the condensate population are in
cated by the~barely visible! vertical lines at each point, an
these are largest for theẼ59000 simulation. For compari
son, the corresponding curve for the ideal gas is plotted
Fig. 4~b!. We can see that forCnl50 the curve is linear up to
the transition point, but theCnl510 000 curve displays a

FIG. 3. Plot of the initial time evolution ofN0(t)/N for four
different simulation energies withCnl510 000. From top to bottom

Ẽ55500,7000,8500,9250,10 000. The simulations were run u
t50.2. Other values of the nonlinearity give qualitatively simil
results.

FIG. 4. ~a! Condensate fraction plotted against total energy a
each individual simulation has reached equilibrium forCnl

510 000. The barely discernible vertical lines on each point in
cate the magnitude of the fluctuations.~b! The curve for the same
system, but calculated for the ideal gas.
05361
i-

in
distinct bulge in this region. The shape of the correspond
curves forCnl5500 and 2000 fall in between theCnl50 and
10 000 cases.

B. Particle distribution

Further evidence of equilibrium is provided by the dist
bution of the particles in momentum space. Rather than
ing the plane-wave basis, we transform the wave functi
into the quasiparticle basis of quadratic Bogoliubov theo
For the homogeneous gas, this theory can be solved ana
cally and we can write the quasiparticle amplitudebk as

bk5ukck2vkc2k , ~18!

where

uk5
1

A12ak
2

, vk5
2ak

A12ak
2

, ~19!

andak is given by

ak511yk
22ykA21yk

2. ~20!

In this last equation, the dimensionless wave vectoryk is
given by yk5k/k0 with k0 as defined in Eq.~13!. The nor-
malization conditionuk

22vk
251 is automatically satisfied by

Eq. ~19!. From Eq.~14! we can see that the sole paramete
of the transformation are the condensate fraction^N0&/N,
and the nonlinear constantCnl .

We time average the populations of the quasipartic
statesNk /N5ubku2 as was described above to give^Nk&/N,
and finally average over angle so that we can produc
one-dimensional plot of̂Nk&/N. This distribution for four
different simulation energies andCnl510 000 is shown in
Fig. 5.

We can see that the shape of the curves is surprisin
smooth for each energy, suggesting that the system i

til

r

-

FIG. 5. Plots of the equilibrium Bogoliubov quasiparticle dist
butions averaged over time and angle for four different total en

gies. Squares,Ẽ56000; crosses,Ẽ57500; circles,Ẽ59000; dots,

Ẽ511 000. The mean condensate occupation for the first three
tributions is off axis.
8-6



l

la
en

a
u
te
sti

th
v
c

ab
e
rin
ns

he

e
q

e

la-

e-

y
e

ei-

our
e

e

uld
he
le
bed
em-
er-
e

ure
uld

ba-
n is

ical
is
by

u-
ns
ion
the

er-

or
the
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equilibrium. The plot of the distribution for any individua
wave function is scattered about the average.

We have also determined the fluctuations of the popu
tion of the quasiparticle modes. The grand canonical
semble for the Bose gas predicts the relationship

^DNk&
25^Nk&

21^Nk& ~21!

for k5” 0, which in the classical limit̂Nk&@1 gives

^DNk&'^Nk&. ~22!

This is indeed the behavior that we observe. Although we
evolving a microcanonical system, in this case there are s
a large number of modes that the remainder of the sys
acts as a bath for any individual mode and the result
applies.

VI. QUANTITATIVE ANALYSIS OF THE DISTRIBUTIONS

While the data presented in Sec. V indicates that
PGPE is evolving the system to equilibrium, as yet we ha
presented no quantitative evidence. To demonstrate con
sively that equilibrium has been reached, we need to be
to assign atemperatureto the simulations. In this section w
measure a temperature for a given simulation by compa
the distribution function of the numerical simulations agai
a predicted energy spectrum.

A. Expected equilibrium distribution

The GPE is the high occupation~classical! limit of the full
equation for the Bose field operator, Eq.~1!. Therefore, in
equilibrium we expect the mean occupation of modek to be
the classical limit of the Bose-Einstein distribution—i.e., t
equipartition relation

^Nk&5
kBT

«k2m
, ~23!

wherek labels theeigenstatesof the system. In general thes
will be some type of quasiparticle mode. Manipulating E
~23!, we find that

«k5
kBT

^Nk&
1m. ~24!

The equilibrium condensate occupation according to the
uipartition relation will be given by Eq.~23! with ^Nk&
→^N0& and «k→l ~the condensate eigenvalue!. From this
expression we can solve for the chemical potential

m5l2
kBT

^N0&
. ~25!

Substituting this result into Eq.~24!, and converting to di-
mensionless units we find

«̃k2l̃

T̃
5S N

^Nk&
2

N

^N0&
D , ~26!
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whereT̃5kBT/(N«L) is the dimensionless temperature.
Once equilibrium has been reached for a single simu

tion, we make use of Eq.~26! to measure the quantityT̃.
Decomposing the wave functions in some basis and tim
averaging the populations determines^Nk&/N as a function
of the variablek, as is plotted in Fig. 5. This completel
specifies the RHS of Eq.~26! and it remains to determine th
quantities on the LHS.

In this section we consider three different methods of
ther predicting or measuring the function«̃k2l̃. If the basis
we have used for our decomposition is a good one, and
prediction for«̃k2l̃ is correct, then this curve will have th
same shape as the RHS of Eq.~26!. The constant of propor-
tionally determined by a fitting procedure will then give th
temperatureT̃.

Before we describe our methods and results, we wo
like to note that the quantity we refer to, throughout t
remainder of this paper, as the temperature is the variabT̃
as determined by the numerical fitting procedures descri
above. We have not yet established that this is the true t
perature as defined by thermal equilibrium with a heat res
voir. However, we believe that if we were to solve th
FTGPE withĥ(x) acting as a heat bath, then the temperat
determined in the coherent region via this method wo
agree with the bath temperature.

B. Method 1: Bogoliubov theory

In the limit of large condensate fraction̂N0&/N;1, we
expect the Bogoliubov transformation to provide a good
sis. For the homogeneous case the dispersion relatio
known analytically, and is given by

«k2l5F S \2k2

2m D 2

1~c\k!2G1/2

, ~27!

wherec5(n0U0 /m)1/2 is the speed of sound and«k is the
absolute energy of a mode with wave vectork. In our dimen-
sionless units this becomes

«̃k2l̃5S k̃412Cnl

^N0&
N

k̃2D 1/2

. ~28!

The condensate fraction is determined from the numer
results, and so when the Bogoliubov dispersion relation
valid, we can determine a temperature for the simulations
substituting Eq.~28! in Eq. ~26!.

Results. We have carried out this analysis for all the sim
lation data. For theCnl5500 case, the measured distributio
are in excellent agreement with the Bogoliubov dispers
relation for all energies, and we have been able to extract
corresponding temperature for each simulation.

However, this is not the case for the more strongly int
acting systems. ForCnl52000, the Bogoliubov relation is a
good fit only for simulations with Ẽ<2000 (̂ N0&/N
>0.75), or for energies above the BEC transition point. F
the Cnl510 000 case, good agreement is found only for
lowest energy simulation withẼ55250 and̂ N0&/N'0.96.
8-7
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Sample fits of the simulation data to the Bogoliubov disp
sion relation are shown in Fig. 6 for cases where the ag
ment is good.~An example of this procedure where the B
goliubov spectrum is not appropriate is given in Fig. 8.!

The reason for the limited range of agreement is beca
the Bogoliubov transformation diagonalizes only a quadra
approximation to the full Hamiltonian. It neglects terms th
are cubic and quartic in noncondensate operators, assu
that they are small~these are discussed in detail below!. This
is a good approximation for theCnl5500 simulations—at
large condensate fraction the dispersion relation is o
slightly shifted from the noninteracting relation«̃k5 k̃2, and
at smaller condensate fractions the difference is negligi
Hence we can fit a temperature up to and above the B
transition.

For the Cnl52000 case the higher-order terms beco
important aboveẼ52000, and for the strongest interactio
strength ofCnl510 000, they are important for all but th
lowest energy simulation we consider. For the higher-ene
simulations the shape of Eq.~26! no longer agrees with Eq

FIG. 6. Fits of the simulation quasiparticle population data
the Bogoliubov dispersion relation for two cases. For both gra
the solid line is the Bogoliubov curve, while the dashed line is
ideal gas dispersion relation. The temperature is determined
least-squares fit to the plot of (N/^Nk&2N/^N0&), which is shown

as the dots.~a! Cnl5500, Ẽ5500, and̂ N0&/N50.929, with a best-

fit temperature from Bogoliubov theory ofT̃50.0175. ~b! Cnl

510 000, Ẽ55250, and^N0&/N50.957, with a best-fit tempera

ture from Bogoliubov theory ofT̃50.018.
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~28!, and we must use a more sophisticated theory to pre
the dispersion relation.

Above the transition point, however, there is no conde
sate and the ideal gas dispersion relation is a reasonable
scription of the system.

C. Method 2: Second-order theory

As the occupation of the quasiparticle modes becom
significant at large interaction strengths, the cubic and qu
tic terms of the many-body Hamiltonian that are neglected
the Bogoliubov transformation become important. In Ref.@5#
Morgan develops a consistent extension of the Bogoliub
theory to second order that leads to a gapless excitation s
trum. This theory treats the cubic and quartic terms of
Hamiltonian using perturbation theory in the Bogoliubo
quasiparticle basis. This results in energy shifts of the ex
tations away from the Bogoliubov predictions of Eq.~27!.

Expressions for the energy shifts of the excitations
given in Sec. VI 2 of Ref.@5#. They have the form

D«̃k5DẼ3~k!1DẼ4~k!1DẼl~k!, ~29!

whereDẼ3(k)@DẼ4(k)# is the shift in energy of a quasipar
ticle in modek due to the cubic~quartic! Hamiltonian, and
DẼl(k) describes the shift due to the change in the cond
sate eigenvalue. In the high-occupation limit we find

DẼ4~k!1DẼl~k!52Cnlk̃
~11ak!

2

12ak
2

, ~30!

wherek̃ is the dimensionless anomalous average, defined

k̃5(
k

~Nk1N2k!ak

N~12ak
2!

. ~31!

The expression forDẼ3(k) is derived from second-orde
perturbation theory, and is rather complicated. We have

DẼ3~k!5
22Cnl

12ak
2 @DẼ3

a~k!1DẼ3
b~k!1DẼ3

c~k!#, ~32!

where

s
e

a

8-8
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DẼ3
a~k!5(

j

~Ni1Nj !~12a i2a j1a iak1a jak2a ia jak!
2

N~zi1zj2zk!~12a i !
2~12a j !

2
, ~33!

DẼ3
b~k!5(

j

~N2 i1N2 j !~a i1a j1ak2a ia j2a iak2a jak!
2

N~zi1zj1zk!~12a i !
2~12a j !

2
, ~34!

DẼ3
c~k!5(

j

~Ni2Nj !~12a j2ak1a ia j1a iak2a ia jak!
2

N~zi2zj1zk!~12a i !
2~12a j !

2
, ~35!
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zk5yk~21yk
2!1/2[«̃kS Cnl

^N0&
N D 21

, ~36!

is another form of the dimensionless energy of modek, with
yk5k/k0 as earlier.

1. Calculation of energy shifts

The numerical calculation of the energy shifts is no
trivial task, and we have used two methods to determine
shifts for our simulations. The first procedure is to calcul
the shifts directly using the population data from the simu
tions. We therefore,

~1! Calculate the quasiparticle populationsNk for the last
50 wave functions of our simulation based on a conden
population^N0&, and then average these over time.

~2! Calculate the energy shifts for modek using these
populations as the input.

~3! Average the shifts over angle to give a on
dimensional function ofk.

This results in plots of the energy shifts that are somew
scattered due to the finite size of the system. The express
for the shifts Eqs.~33!–~35! contain poles when energ
matches occur, and hence the numerical calculation is
formed using an imaginary part in the denominator. The s
of this imaginary part does not affect the shape of the cu
in the limit that it is small, but it does affect the amount
scatter in the shifts. We have performed sample calculat
allowing L to increase while keeping other parameters of
system constant, and this makes the curve smoother.

The second procedure only makes use of the conden
fraction and thetotal number of quasiparticles, rather tha
the population of the individual levels. By assuming the B
goliubov spectrum is a good estimate of the energies~which
must be true for the perturbation theory to be valid!, we can
estimate the temperatureT̃est using the normalization con
straint on the populations

(
k

^Nk&
N

5
^N0&

N
1 (

k.0

T̃est

«̃k2l̃
, ~37!

where we have used the approximationm̃5l̃ that is valid
when there is a condensate present. The LHS as well as
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value of ^N0&/N are determined by the simulations, and t
Bogoliubov relation Eq.~28! is used for the energies.

Once the estimated temperatureTest is determined, we use
the equipartition Bogoliubov relation for the populations
Eqs.~33!–~35!, and then approximate the sums by numeri
integration to calculate the shifts to the levels. We find th
this gives curves that agree on average with those calcul
using the first method, but are much smoother. A compari
of the two methods is given in Fig. 7.

2. Results

For theCnl52000 simulations, the quasiparticle popul
tions extracted from the simulations are in much bet
agreement with the energy spectrums from the second-o
theory than with those from ordinary Bogoliubov theory. W
find that most of the measured distributions for theCnl
52000 case are well described by the second-order the
Sample results are presented in Fig. 8~a!.

However, this is not the case for theCnl510 000 simula-
tions. In fact we find that the energy spectrum is shifted
the opposite direction to that inferred from the simulation

FIG. 7. The shifts to the Bogoliubov quasiparticle energies
two different simulations. The solid thin curves are calculated
the first method described in the text using population data
tracted from the simulations, and are hence somewhat noisy.
thick gray curves use the second method, assuming equilibr
populations given by Bogoliubov theory and calculated by num

cal integration. The lower curves are for theCnl52000, Ẽ54000
simulation, and appear to be approximately gapless ask→0. The

upper curves are for theCnl510 000, Ẽ56000 simulation, and ex-
hibit a gap ask→0.
8-9



b

ou

nd-

sults
are
ex-
ms

.
uf-
we
n
is

hat
ms,
nite
on

te-

ms
the

e
ave

ave

e-
ete
the

f the
e-

the

s

i-
he
n

to

rd
d

th

sio
ula

ith

DAVIS, MORGAN, AND BURNETT PHYSICAL REVIEW A66, 053618 ~2002!
and that there is an energy gap fork→0. The reasons for this
are discussed below.

3. Breakdown of perturbation theory

The validity of the second-order theory is constrained
the requirement@5#

S kBT

n0U0
D ~n0a3!1/2!1, ~38!

wheren0 is the condensate density. This corresponds in
dimensionless units to

T̃

~8p!3/2S Cnl

^N0&/N
D 1/2

!1. ~39!

FIG. 8. Fits of the simulation quasiparticle population data
dispersion relations. The dots are a plot of (N/^Nk&2N/^N0&), the
solid curve is for the dispersion relation predicted by second-o
theory, and the dashed curve is the dispersion relation predicte

Bogoliubov theory.~a! Cnl52000, Ẽ54000, and̂ N0&/N50.279.
Second-order theory gives a good fit to the numerical results wi

best-fit temperature ofT̃50.201. ~b! Cnl510 000, Ẽ56000, and
^N0&/N50.841. The shape of the second-order theory disper
relation does not agree with the population data from the sim
tion, and the gap is apparent ask→0. The gray curve plots the
energies as determined by the method described in Sec. VI D w

best-fit temperature ofT̃50.0726.
05361
y
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For the results of Fig. 8 withCnl52000, Ẽ54000 this pa-
rameter is 0.14 and so we are beginning to probe the bou
ary of validity of the theory. At higherẼ the shifts become of
the order of the unperturbed energies, and hence the re
are unreliable. In this region even higher-order terms
important, and the second-order theory can no longer be
pected to give good results. From our calculations it see
that this parameter should be<0.2 for the theory to be valid

We would like to emphasize, however, that the GPE s
fers no such limitations. It is nonperturbative and thus
expect that it will be valid all the way through the transitio
region, as long as the high-occupation number condition
satisfied.

4. Gaplessness in a finite system

In the course of this work it has become apparent t
while the second order theory is gapless for infinite syste
this is not the case for systems such as ours with a fi
momentum cutoff. The individual terms in the perturbati
expansion given by Eqs.~30! and~32! contain contributions
that are proportional to 1/k ~infrared divergent! and a con-
stant ~gap! in the low-k limit. For a homogeneous system
these terms cancel exactly when the upper limit of the in
grals is infinite, and this leaves a gapless spectrum@5–7#.
However, in a system with a momentum cutoff these ter
do not exactly cancel, with the result that there is a gap in
predicted excitation spectrum ask→0.

Briefly, this gap arises because the energy shiftsDẼ4(k)
1DẼl(k) of Eq. ~30! only involve the quantityk̃. This is
obtained from Eq.~31! via a sum over all states below th
cutoff where the summand depends only on a single w
vector. In contrast the shiftDẼ3(k) of Eq. ~32! involves a
sum over states where the summand depends on two w
vectorsi and j ~related by momentum conservation! both of
which must be below the cutoff. This difference in the r
strictions on the summations leads to a lack of compl
cancellation in the corresponding shifts at low energy and
appearance of a gap in the excitation spectrum.

For the homogeneous gas, we can calculate the size o
gap predicted by the second order theory analytically. R
placing the summations by integrations, we find that
leading order contribution to the energy shift in the limitk
→0 is

Dek5S kBT

n0U0
D ~n0a3!1/2S 8

p D 1/2 ek

yk~21yc
2!

1O~yk!,

~40!

where y5k/k0 as before andyc5kc /k0, where kc is the
momentum cutoff. In the limitk→0 we haveek}yk and so
Dek tends to a constant~the gap!. The size of the gap tend
to zero as the momentum cutoffyc tends to infinity but oth-
erwise it is finite. We stress that Eq.~40! is only the low-k
limit of the exact result. For our simulations there is a min
mum wave vector in the problem so it is possible for t
terms of orderyk to be larger than the gap contribution give

er
by

a

n
-

a

8-10



al
at
ua

p
te
gi
n

s

or
an
o

is

er
u

on

p
e
le
in
u

en
e

th
ur
a

e
he

o
qu
te
tio

el

g
n

en-

the
g a
cles
ing

asi-

on,

ion
ese
c-

le
eter-
all

gle

nal

d via

ent
p-
ious

the

Eq.
of,
eem
are
no
An
ion

de-
the

m
ly
asis
-

sec-
era-
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above. This is the case for the simulations withCnl<2000,
whereyc is reasonably large and the gap is therefore sm

The result of Eq.~40! contains the small parameter th
controls the validity of the second-order theory in the us
case where there is no momentum cutoff@cf. Eq.~38!#. How-
ever, the result also depends explicitly on the cutoffkc so in
this case there is a second parameter in the theory. For
turbation theory to be valid we require that the predic
energy shifts are small compared to the unperturbed ener
i.e., thatDek /ek!1. We therefore obtain a second criterio
for the validity of the second-order theory which is

S kBT

n0U0
D ~n0a3!1/2S 8

p D 1/2 1

yk~21yc
2!

!1. ~41!

This result should hold for all momenta in the simulation
and in particular for the smallest value ofyk . For theCnl

52000, Ẽ54000 simulations the left-hand side is 0.04 f
k̃52p. In this case the gap is negligible and the domin
contribution to the energy shifts comes from the terms
order yk in Eq. ~40!. The small parameter of the theory
therefore given by Eq. ~38!. However, for the Cnl

510 000, Ẽ55250 simulations the left-hand side is of ord
0.12. In this case the gap is not negligible and we cannot
second-order theory to define a temperature.

This result is somewhat surprising since, even for a c
densate fraction of 80% the small parameter of Eq.~38! is of
order 0.07, and it does seem reasonable to expect that
turbation theory should be applicable. This does not app
to be the case, however, and we have so far been unab
determine the root cause of this problem. It is worth not
that the numerical simulations themselves have no diffic
ties in this regime and do not predict a gap at low mom
tum. This is because the GPE is nonperturbative and ind
this is one of the main reasons for using it to study
properties of Bose condensed systems at finite temperat

The disagreement between the second-order theory
the numerical simulations is illustrated in Fig. 8~b!, where it
can be seen that even despite the gap, the shifts the th
predicts are in the wrong direction in comparision with t
simulations.

D. Method 3: Nonperturbative determination
of the temperature

The failure of second-order theory for theCnl510 000
simulations caused us to investigate other possible meth
of determining the temperature once the system was in e
librium. This has led to what seems to be a method of de
mining the temperature that does not rely on perturba
theory, and we describe it here.

We found earlier that the Bogoliubov spectrum gave
good prediction of the populations of the quasiparticle lev
for the lowest energy simulation in theCnl510 000 series
with Ẽ55250. Therefore, it seems reasonable that the Bo
liubov basis should remain a good one for perturbatio
theory for the next simulation withẼ55500, even though
05361
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the second-order theory cannot be used to calculate the
ergy shifts.

Therefore, we attempted another method to determine
absolute energy of each quasiparticle level. If we are usin
good basis, then on a short-time scale the quasiparti
should be independent, with amplitudes evolving accord
to

bk~ t !5bk~ t0!exp@2 i«k~ t2t0!/\#. ~42!

Thus by measuring the gradient of the phase of each qu
particle we can determine its energy.

To determine the energy spectrum for a single simulati
our numerical procedure was as follows.

~1! Take the last 50 wave functions saved for a simulat
once it has reached equilibrium, and evolve each of th
individually for a very short period. One hundred wave fun
tions are saved for each of the 50 simulations.

~2! Transform the wave functions into the quasipartic
basis, and measure the energy of each quasiparticle, d
mined by a linear fit to the phase of each amplitude over
100 wave functions.

~3! Average over all 50 energy spectrums to give a sin
three-dimensional spectrum.

~4! Finally, average over angle to give a one-dimensio
energy spectrum.

This gives us a dispersion relation«̃k2l̃ which can then
be compared to a plot of (N/^Nk&2N/^N0&). If the shapes of
the curves agree, then a temperature can be determine
Eq. ~26! as in the earlier sections.

We first tested this procedure on theCnl52000 simulation
series, and found that this method was in good agreem
with the second-order theory calculations, the two a
proaches assigning the same temperature to the var
simulations.

We then moved onto theCnl510 000 simulations. We
found the surprising result that not only did the shape of
plots of the curves for«k /kBTfit and (1/Nk21/N0) agree for
the lower-energy simulations where the parameter of
~38! was small, it also agreed when it was of the order
and greater than one. This was unexpected, as it would s
likely that near the phase transition when interactions
strong that the Bogoliubov quasiparticle basis would
longer be sufficiently good for this method to be accurate.
example of the energy spectrum and its fit to the populat
data is shown in Fig. 8~b!.

As a further test we carried out the same procedure
scribed above, but using the plane-wave basis rather than
Bogoliubov quasiparticle basis. Intuitively it would see
that this would no longer work—but we found that not on
did it give the same temperatures as the quasiparticle b
for the Cnl510 000 simulations, it also agreed with the tem
peratures determined using second-order theory for theCnl
52000 simulations.

VII. TEMPERATURE DEPENDENCE

Using the three methods described in the preceding
tion, we have been able to measure an equilibrium temp
8-11



he
de
s
th
th
e

ng
a

th
m

em
v

tio
i

ha
t

t o
fra
th
e

t f
ri
,
m
io
tl

tu
ge
r

er
e,
his
in

ter-

T-
a-
he
s are
T-

ow

to

t

P
.

in
io

s in

ur
l
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ture forall simulations in this paper. We are confident of t
results determined from both Bogoliubov and second-or
theory; however unfortunately, we do not have any result
compare with for the strongly interacting regime where
nonperturbative method was used. We can only conclude
the temperatures extracted using this method agree num
cally with the other two methods in the weakly interacti
regime, and that the values obtained seem reasonable
basis independent elsewhere. We intend to test this me
further in the future using a numerical ‘‘ideal gas thermo
eter.’’

In this section we move on to consider how other syst
properties such as condensate fraction, specific heat, and
ticity vary with the temperatureT̃.

A. Condensate fraction

It is usual when considering how the condensate frac
varies with the other properties of the system to plot
against temperature, rather than against energy as we
done in Fig. 4. We are now in a position to present this da
and it is displayed in Fig. 9. We can see that a major effec
increasing the nonlinearity is to increase the condensate
tion at any given temperature. This can be understood in
Bogoliubov regime by considering the shape of the disp
sion relation.

The Bogoliubov dispersion relation Eq.~28! shows that
for a given condensate fraction, a larger value ofCnl will
result in an increase in the energy of any modek relative to
the condensate. This leads directly to the observation tha
a fixed condensate fraction, an increase in the nonlinea
must lead to an increase in the temperature. However
^N0&/N→0 in the transition region, the energy-momentu
relationship tends towards the ideal gas dispersion relat
and therefore the transition temperature will not be grea
shifted over a wide range of nonlinearities.

There has been some discussion recently in the litera
about the shift in the transition temperature for the homo
neous interacting Bose gas, with some authors even disag

FIG. 9. Condensate fraction versus temperature for the PG
system withk,1532p/L for four different interaction strengths
The open circles are forCnl510 000, crosses forCnl52000, solid
dots forCnl5500, and the solid line is for the ideal gas. The shift
the transition temperature is positive with increasing interact
strengthCnl .
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ing on the direction of the shift~e.g., see Ref.@23# and ref-
erences within!. For the PGPE system described in this pap
by Eq. ~6!, we can see from Fig. 9 that the shift is positiv
although as yet we have made no effort to quantify this. T
would require many more simulations to be run, especially
the transition region, and for the temperatures to be de
mined more accurately.

It seems plausible that future simulations of the full F
GPE ~5! or approximations to it could be used to quantit
tively measure the shift in the critical temperature for t
homogeneous Bose gas when the lowest-energy mode
sufficiently classical. However, the terms coupling the F
GPE to the effective bathĥ(x) may be difficult to implement
computationally, and at the present time we are unsure h
to proceed in this direction.

B. Specific heat

In Fig. 10~a! we plot the energy of the simulations due
excited states (Ẽ2Ẽ0) versus temperature, whereẼ0

5Cnl/2 is the energy of the system atT̃50. We can see tha

E

n

FIG. 10. Graphs relating to the specific heat of the Bose ga
the PGPE model. The open circles are forCnl510 000, crosses for
Cnl52000, solid dots forCnl5500, and the solid line is for the
ideal gas.~a! Plot of the energy versus temperature for all fo
interaction strengths considered.~b! Plot of the specific heat for al
four interaction strengths.
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at low temperatures for all interaction strengths this is
straight line, with a slope of about 13 996—the number
excited modes in the system. This is as expected—the a
age energy contained in a given modek is

^Ẽk&[
^Nk&

N
«̃k5

T̃

«̃k2m̃
«̃k'T̃, ~43!

when there is a condensate present andm̃→02. At higher
temperatures, however, the energy rises above the equip
tion prediction for nonzero interaction strengthCnl , and this
is an indication that either there are no longer independ
modes in the system or more degrees of freedom appear~for
example, by the creation of vortices!.

The derivative of this curve with respect to temperatu
gives the specific heat, and this quantity is plotted in F
10~b!. The messy nature of this plot is due to small unc
tainties in the measured temperature which are ampli
when the temperature difference between successive sim
tions is calculated. However, the plot does display an in
esting feature. For nonzero interaction strength, the spe
heat appears to reach a peak at the transition tempera
and the height of this peak increases with the value
Cnl—somewhat reminiscent of the lambda transition in
perfluid helium. Once again, further simulations and m
accurate determination of the temperature are required
quantitative investigation of this effect. This will be the su
ject of future work.

C. The role of vortices

A further quantity of interest is the vorticity of the syste
in equilibrium. It has been argued that vortices may be
portant in the superfluid transition of4He, reducing the su-
perfluid density near the transition point@24#. With this in
mind, we have studied the presence of vortex lines in
simulations. Recently Berloff and Svistunov@25# have con-
sidered the evolution of topological defects in the evolut
of a Bose gas from a strongly nonequilibrium state.

A vortex is a topological excitation, characterized in
wave function by

R
C
“ Arg@c~x!#•dl52pn, ~44!

whereC is a closed contour, andn is a nonzero integer, the
sign of which indicates the circulation of the vortex. Th
continuous variation of the phase from zero to 2np around
such a contour implies that there must be a discontinuity
the phase within the loop. The only way that this can
physical is for the wave function to have zero amplitude
the spatial position of the phase singularity.

In a two-dimensional wave function the center of vortic
are zero-dimensional points, and they can be easily cou
to give a measure of the vorticity of the system. However
three dimensions vortices form lines and rings, and
equivalent quantity of the 2D measure of vorticity would
to calculate the length of all vortex structures in the wa
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function. This would be a somewhat complicated proced
numerically, and so we have devised a different techniqu

We increase the spatial resolution of our wave functio
to be 12831283128 points, so that the grid spacing
smaller than the vortex healing lengthj, defined by

\2

2mj2
5n0U0 . ~45!

We do this by extending the wave function ink space, and
then Fourier transforming to real space. This does not req
any extra information, as fork.1532p/L we haveck50.
We then count the number of vortex lines passing throu
everyxy plane, and take the average over all planes. It se
that this is a reasonable measure of the vorticity of the w
function, and it should be similar to the measurement of
length of the vortex structures discussed above.

We have analyzed the data from the simulations using
procedure. We find that when the energy of the simulation
sufficiently high that there are vortices present, the time e
lution of the vorticity is a good indicator for when the syste
reaches equilibrium. As is the case for the condensate po
lation, the vorticity tends to an equilibrium value which flu
tuates by a small amount~much smaller than the fluctuation
in the condensate population!.

A plot of the vorticity against system energy is shown
Fig. 11~a! for the Cnl510 000 simulation~the curves are
qualitatively similar for the other nonlinearities!. We see that
there is a minimum energy required for vortices to be pres
in the system at equilibrium. Also, as we reach this ene
the plot of condensate occupation versus energy appea
dip. This same behavior is observed for theCnl5500 and
2000 cases, but it occurs at a higher condensate fraction,
is not as pronounced. There is no corresponding depar
from linearity in the ideal gas case, as was seen in Fig. 4~b!.

A plot of the number of vortex lines versus temperatu
for all the simulations is shown in Fig. 11~b!, and this dis-
plays a large increase in the vorticity near the transition te
perature forCnl510 000. A more in-depth analysis of thi
behavior will be carried out in a subsequent extension of
work.

Finally, a three-dimensional visualization of the netwo
of vortex lines is shown in Fig. 12 for three simulation e
ergies for theCnl510 000 simulations. Each point corre
sponds to where a vortex line was detected in the horizo
planes, and for the lowest two energies several vortex ri
are clearly visible.

VIII. CONCLUSIONS

We have presented what we believe is compelling e
dence that the projected Gross-Pitaevskii equation is a g
approximation to the dynamics of the classical modes o
Bose gas. We have described how to carry out the projec
technique in the homogeneous case with periodic bound
conditions, and have shown that starting with a randomi
wave function with a given energy, the projected GP
evolves towards an equilibrium state. We have analyzed
numerical data in terms of quadratic Bogoliubov theory, a
also the gapless, finite temperature theory of Ref.@5# in the
8-13
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classical limit. We have found that both the occupation a
energies of the quasiparticles agree quantitatively with
predictions when these theories are valid.

Outside the range of perturbation theory we have p
posed another technique that has allowed us to determi
temperature for the PGPE simulations in equilibrium. T
method agrees with the perturbative methods when they
valid. Using this definition, we have found that increasi
the nonlinearityCnl leads to an increase in both the transiti
temperature and the specific heat of the system at the cri
point. We have also presented evidence that suggests vor
may play some role in the transition. The projected GPE
simple equation but it appears to describe very rich phys
only some of which we have considered here.

FIG. 11. The presence of vortices in the simulations.~a! A plot
of vorticity for the Cnl510 000 simulation series. The number
vortex lines per plane are indicated by open circles with the scal
the left vertical axis, and the condensate fraction by dots with
scale on the right vertical axis.~b! The number of vortex lines pe
plane plotted against temperature for all three simulation se
Open circles areCnl510 000, crosses areCnl52000, and dots are
Cnl5500.
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FIG. 12. A visualization of the vortex network in equilibrium fo

the case ofCnl510 000. ~a! Ẽ57000, ~b! Ẽ58000, ~c! Ẽ59000.
Each point corresponds to where a vortex line was detected in
horizontal plane. Several vortex rings are visible in the figures.
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