247 research outputs found

    Small Engine Component Technology (SECT) study. Program report

    Get PDF
    The study was conducted to identify high payoff technologies for year 2000 small gas turbine applications and to provide a technology plan for guiding future research and technology efforts. A regenerative cycle turboprop engine was selected for a 19 passenger commuter aircraft application. A series of engines incorporating eight levels of advanced technologies were studied and their impact on aircraft performance was evaluated. The study indicated a potential reduction in fuel burn of 38.3 percent. At 1.00pergallonfuelprice,apotentialDOCbenefitof12.5percentwouldbeachieved.At1.00 per gallon fuel price, a potential DOC benefit of 12.5 percent would be achieved. At 2.00 per gallon, the potential DOC benefit would increase to 17.0 percent. Four advanced technologies are recommended and appropriate research and technology programs were established to reach the year 2000 goals

    Structure and distribution of the slope fish community in the vicinity of the sub-Antarctic Prince Edward Archipelago

    Get PDF
    Demersal fish community structure, distribution and trophic relationships on the slope (depth range 200–1500 m) of the sub-Antarctic Prince Edward Islands and surrounding sea rises were investigated during a pilot survey conducted in April 2001 onboard fishing vessel MV Iris. A total of 56 fish taxa were collected during the survey, of which 44 were identified to the species level, seven to the genus level and five to the family level. Among the identified taxa, 36 constituted new records for the area investigated. Total catch per unit effort (cpue) during the survey ranged from 1•1 to 241•2 individuals h 1. Both average fish diversity and total cpue positively correlated with trawling depth. Overall, mean sampling depth and near-bottom temperature explained 56% of total fish cpue. Hierarchal cluster analysis identified three distinct fish assemblages with pronounced dominant species. Major shifts in fish community composition occurred at 500–600 m and 800–900 m depth strata and could probably be a result of physical and biological vertical zonation. Analysis of the diet of selected fish species showed that they were generalist feeders, consuming predominantly pelagic, including epipelagic, meso- and benthopelagic, prey. Diets of six species and nitrogen stable isotope signatures of 22 species revealed that with a few exceptions most fishes occupied the fourth trophic level and were tertiary consumers. Wide variability in carbon isotopic signatures is discussed with respect to alternative, e.g. possible importance of high Antarctic and chemoautotrophic v. photoautotrophic sub-Antarctic primary production, organic matter sources at the base of deep-sea food webs

    Domain Wall Fermions in Quenched Lattice QCD

    Get PDF
    We study the chiral properties and the validity of perturbation theory for domain wall fermions in quenched lattice QCD at beta=6.0. The explicit chiral symmetry breaking term in the axial Ward-Takahashi identity is found to be very small already at Ns=10, where Ns is the size of the fifth dimension, and its behavior seems consistent with an exponential decay in Ns within the limited range of Ns we explore. From the fact that the critical quark mass, at which the pion mass vanishes as in the case of the ordinary Wilson-type fermion, exists at finite Ns, we point out that this may be a signal of the parity broken phase and investigate the possible existence of such a phase in this model at finite Ns. The rho and pi meson decay constants obtained from the four-dimensional local currents with the one-loop renormalization factor show a good agreement with those obtained from the conserved currents

    The finite temperature QCD phase transition with domain wall fermions

    Get PDF
    The domain wall formulation of lattice fermions is expected to support accurate chiral symmetry, even at finite lattice spacing. Here we attempt to use this new fermion formulation to simulate two-flavor, finite temperature QCD near the chiral phase transition. In this initial study, a variety of quark masses, domain wall heights and domain wall separations are explored using an 8^3 x 4 lattice. Both the expectation value of the Wilson line and the chiral condensate show the temperature dependence expected for the QCD phase transition. Further, the desired chiral properties are seen for the chiral condensate, suggesting that the domain wall fermion formulation may be an effective approach for the numerical study of QCD at finite temperature.Comment: 44 pages, 15 figure

    Small eigenvalues of the staggered Dirac operator in the adjoint representation and Random Matrix Theory

    Get PDF
    The low-lying spectrum of the Dirac operator is predicted to be universal, within three classes, depending on symmetry properties specified according to random matrix theory. The three universal classes are the orthogonal, unitary and symplectic ensemble. Lattice gauge theory with staggered fermions has verified two of the cases so far, unitary and symplectic, with staggered fermions in the fundamental representation of SU(3) and SU(2). We verify the missing case here, namely orthogonal, with staggered fermions in the adjoint representation of SU(N_c), N_c=2, 3.Comment: 3 pages, revtex, 2 postscript figure

    Quenched Lattice QCD with Domain Wall Fermions and the Chiral Limit

    Get PDF
    Quenched QCD simulations on three volumes, 83×8^3 \times, 123×12^3 \times and 163×3216^3 \times 32 and three couplings, β=5.7\beta=5.7, 5.85 and 6.0 using domain wall fermions provide a consistent picture of quenched QCD. We demonstrate that the small induced effects of chiral symmetry breaking inherent in this formulation can be described by a residual mass (\mres) whose size decreases as the separation between the domain walls (LsL_s) is increased. However, at stronger couplings much larger values of LsL_s are required to achieve a given physical value of \mres. For β=6.0\beta=6.0 and Ls=16L_s=16, we find \mres/m_s=0.033(3), while for β=5.7\beta=5.7, and Ls=48L_s=48, \mres/m_s=0.074(5), where msm_s is the strange quark mass. These values are significantly smaller than those obtained from a more naive determination in our earlier studies. Important effects of topological near zero modes which should afflict an accurate quenched calculation are easily visible in both the chiral condensate and the pion propagator. These effects can be controlled by working at an appropriately large volume. A non-linear behavior of mπ2m_\pi^2 in the limit of small quark mass suggests the presence of additional infrared subtlety in the quenched approximation. Good scaling is seen both in masses and in fπf_\pi over our entire range, with inverse lattice spacing varying between 1 and 2 GeV.Comment: 91 pages, 34 figure

    Domain wall fermion zero modes on classical topological backgrounds

    Full text link
    The domain wall approach to lattice fermions employs an additional dimension, in which gauge fields are merely replicated, to separate the chiral components of a Dirac fermion. It is known that in the limit of infinite separation in this new dimension, domain wall fermions have exact zero modes, even for gauge fields which are not smooth. We explore the effects of finite extent in the fifth dimension on the zero modes for both smooth and non-smooth topological configurations and find that a fifth dimension of around ten sites is sufficient to clearly show zero mode effects. This small value for the extent of the fifth dimension indicates the practical utility of this technique for numerical simulations of QCD.Comment: Updated fig. 3-7, small changes in sect. 3, added fig. 8, added more reference

    Super Yang-Mills on the lattice with domain wall fermions

    Get PDF
    The dynamical N=1, SU(2) Super Yang-Mills theory is studied on the lattice using a new lattice fermion regulator, domain wall fermions. This formulation even at non-zero lattice spacing does not require fine-tuning, has improved chiral properties and can produce topological zero-mode phenomena. Numerical simulations of the full theory on lattices with the topology of a torus indicate the formation of a gluino condensate which is sustained at the chiral limit. The condensate is non-zero even for small volume and small supersymmetry breaking mass where zero mode effects due to gauge fields with fractional topological charge appear to play a role.Comment: LaTeX, 35 pages, 11 eps figures. A few changes in sec. 5.3, figure 11 added. To appear in Phys. Rev.

    Enemies with benefits: parasitic endoliths protect mussels against heat stress

    Get PDF
    Positive and negative aspects of species interactions can be context dependant and strongly affected by environmental conditions. We tested the hypothesis that, during periods of intense heat stress, parasitic phototrophic endoliths that fatally degrade mollusc shells can benefit their mussel hosts. Endolithic infestation significantly reduced body temperatures of sun-exposed mussels and, during unusually extreme heat stress, parasitised individuals suffered lower mortality rates than nonparasitised hosts. This beneficial effect was related to the white discolouration caused by the excavation activity of endoliths. Under climate warming, species relationships may be drastically realigned and conditional benefits of phototrophic endolithic parasites may become more important than the costs of infestation

    Studying the impact of ocean eddies on the ecosystem of the Prince Edward Islands: DEIMEC ll

    Get PDF
    The Dynamics of Eddy Impacts on Marion’s Ecosystem Study (DEIMEC) programme was begun in 2002 with the aim of understanding the importance of the oceanic, upstream environment to the ecosystem of the Prince Edward Islands. This island group consists of two small volcanic islands and provides many opportunities for studying ecological and evolutionary processes, for monitoring ecological changes in relation to global climate change and for conserving a unique component of the planet’s biological diversity
    • …
    corecore