257 research outputs found

    Electronic structure of the muonium center as a shallow donor in ZnO

    Full text link
    The electronic structure and the location of muonium centers (Mu) in single-crystalline ZnO were determined for the first time. Two species of Mu centers with extremely small hyperfine parameters have been observed below 40 K. Both Mu centers have an axial-symmetric hyperfine structure along with a [0001] axis, indicating that they are located at the AB_{O,//} and BC_{//} sites. It is inferred from their small ionization energy (~6 meV and 50 meV) and hyperfine parameters (~10^{-4} times the vacuum value) that these centers behave as shallow donors, strongly suggesting that hydrogen is one of the primary origins of n type conductivity in as-grown ZnO.Comment: 4 pages, 4 figures, submitted to PR

    Scaling of impact fragmentation near the critical point

    Full text link
    We investigated two-dimensional brittle fragmentation with a flat impact experimentally, focusing on the low impact energy region near the fragmentation-critical point. We found that the universality class of fragmentation transition disagreed with that of percolation. However, the weighted mean mass of the fragments could be scaled using the pseudo-control parameter multiplicity. The data for highly fragmented samples included a cumulative fragment mass distribution that clearly obeyed a power-law. The exponent of this power-law was 0.5 and it was independent of sample size. The fragment mass distributions in this regime seemed to collapse into a unified scaling function using weighted mean fragment mass scaling. We also examined the behavior of higher order moments of the fragment mass distributions, and obtained multi-scaling exponents that agreed with those of the simple biased cascade model.Comment: 6 pages, 6 figure

    Field-Induced Uniform Antiferromagnetic Order Associated with Superconductivity in Pr1x_{1-x}LaCex_{x}CuO4δ_{4-\delta}

    Full text link
    Strong correlation between field-induced antiferromagnetic (AF) order and superconductivity is demonstrated for an electron-doped cuprate superconductor, Pr1x_{1-x}LaCex_{x}CuO4δ_{4-\delta} (PLCCO). In addition to the specimen with x=0.11x=0.11 (which is close to the AF phase boundary, x0.10x\simeq0.10), we show that the one with x=0.15x=0.15 (Tc16T_c\simeq16 K at zero field) also exhibits the field-induced AF order with a reduced magnitude of the induced moment. The uniform muon Knight shift at a low magnetic field (102\sim10^2 Oe) indicates that the AF order is not localized within the cores of flux lines, which is in a marked contrast with theoretical prediction for hole-doped cuprates. The presence of anomalous non-diagonal hyperfine coupling between muons and Pr ions is also demonstrated in detail.Comment: 8 pages, 5 figures, to be published in J. Phys. Soc. Jp

    Nonlocal Effects and Shrinkage of the Vortex Core Radius in YNi2B2C Probed by muSR

    Full text link
    The magnetic field distribution in the vortex state of YNi2B2C has been probed by muon spin rotation (muSR). The analysis based on the London model with nonlocal corrections shows that the vortex lattice has changed from hexagonal to square with increasing magnetic field H. At low fields the vortex core radius, rho_v(H), decreases with increasing H much steeper than what is expected from the sqrt(H) behavior of the Sommerfeld constant gamma(H), strongly suggesting that the anomaly in gamma(H) primarily arises from the quasiparticle excitations outside the vortex cores.Comment: 4 pages, 4 figures, submitted to Phys. Rev.

    A Giant Crater on 90 Antiope?

    Full text link
    Mutual event observations between the two components of 90 Antiope were carried out in 2007-2008. The pole position was refined to lambda0 = 199.5+/-0.5 eg and beta0 = 39.8+/-5 deg in J2000 ecliptic coordinates, leaving intact the physical solution for the components, assimilated to two perfect Roche ellipsoids, and derived after the 2005 mutual event season (Descamps et al., 2007). Furthermore, a large-scale geological depression, located on one of the components, was introduced to better match the observed lightcurves. This vast geological feature of about 68 km in diameter, which could be postulated as a bowl-shaped impact crater, is indeed responsible of the photometric asymmetries seen on the "shoulders" of the lightcurves. The bulk density was then recomputed to 1.28+/-0.04 gcm-3 to take into account this large-scale non-convexity. This giant crater could be the aftermath of a tremendous collision of a 100-km sized proto-Antiope with another Themis family member. This statement is supported by the fact that Antiope is sufficiently porous (~50%) to survive such an impact without being wholly destroyed. This violent shock would have then imparted enough angular momentum for fissioning of proto-Antiope into two equisized bodies. We calculated that the impactor must have a diameter greater than ~17 km, for an impact velocity ranging between 1 and 4 km/s. With such a projectile, this event has a substantial 50% probability to have occurred over the age of the Themis family.Comment: 30 pages, 3 Tables, 8 Figures. Accepted for publication in Icaru

    Field-Induced Quasiparticle Excitation in Ca(Al0.5_{0.5}Si0.5_{0.5})2_2: Evidence for unconventional Superconductivity

    Full text link
    The temperature (TT) and magnetic field (HH) dependence of the magnetic penetration depth, λ(T,H)\lambda(T,H), in Ca(Al0.5_{0.5}Si0.5_{0.5})2_2 exhibits significant deviation from that expected for conventional BCS superconductors. In particular, it is inferred from a field dependence of λ(H)\lambda(H) (H\propto H) at 2.0 K that the quasiparticle excitation is strongly enhanced by the Doppler shift. This suggests that the superconducting order parameter in Ca(Al0.5_{0.5}Si0.5_{0.5})2_2 is characterized by a small energy scale ΔS/kB2\Delta_S/k_B\le 2 K originating either from anisotropy or multi-gap structure.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Muonium as a shallow center in GaN

    Get PDF
    A paramagnetic muonium (Mu) state with an extremely small hyperfine parameter was observed for the first time in single-crystalline GaN below 25 K. It has a highly anisotropic hyperfine structure with axial symmetry along the [0001] direction, suggesting that it is located either at a nitrogen-antibonding or a bond-centered site oriented parallel to the c-axis. Its small ionization energy (=< 14 meV) and small hyperfine parameter (--10^{-4} times the vacuum value) indicate that muonium in one of its possible sites produces a shallow state, raising the possibility that the analogous hydrogen center could be a source of n-type conductivity in as-grown GaN.Comment: 4 figures, to be published in Phys. Rev. Letter

    Transition from damage to fragmentation in collision of solids

    Full text link
    We investigate fracture and fragmentation of solids due to impact at low energies using a two-dimensional dynamical model of granular solids. Simulating collisions of two solid discs we show that, depending on the initial energy, the outcome of a collision process can be classified into two states: a damaged and a fragmented state with a sharp transition in between. We give numerical evidence that the transition point between the two states behaves as a critical point, and we discuss the possible mechanism of the transition.Comment: Revtex, 12 figures included. accepted by Phys. Rev.

    New model for surface fracture induced by dynamical stress

    Full text link
    We introduce a model where an isotropic, dynamically-imposed stress induces fracture in a thin film. Using molecular dynamics simulations, we study how the integrated fragment distribution function depends on the rate of change and magnitude of the imposed stress, as well as on temperature. A mean-field argument shows that the system becomes unstable for a critical value of the stress. We find a striking invariance of the distribution of fragments for fixed ratio of temperature and rate of change of the stress; the interval over which this invariance holds is determined by the force fluctuations at the critical value of the stress.Comment: Revtex, 4 pages, 4 figures available upon reques
    corecore