25 research outputs found

    EBF noise reduction through nozzle/flap positioning

    Get PDF
    Results are presented of an experimental and analytical study of the dependence of externally blown flap (EBF) noise on the relative position and shape of engine exhaust nozzle. Tests, conducted on a 1/15 scale model of a triple-slotted EBF system, indicate that a significant reduction (of up to 10 to 15 db for no forward speed case and of up to 5 to 10 db for forward speed case) is possible in the low frequency (around 63 Hz) region of the noise spectrum of the full scale device for small nozzle/flap separation distances. The overall acoustic performance, measured in PNdb, does not exhibit significant reductions. The analysis of the EBF noise is carried out for two limiting airfoil in a free jet. The analytical results also suggest that low frequency noise can be reduced by placing the nozzle close to the flow turning elements

    Small scale noise and wind tunnel tests of upper surface blowing nozzle flap concepts. Volume 2. Acoustic test results

    Get PDF
    Results are summarized of acoustic tests on two advanced concepts of upper-surface-blowing propulsive lift devices

    Development, fabrication and calibration of a porous surface microphone in an aerofoil

    Get PDF
    The development of a porous surface microphone in an airfoil intended to measure acoustic signals in a turbulent airflow and to minimize the flow noise is described. The sensor because of its airfoil operates over a wide range of yaw angles and flow velocities without excessive flow noise. The acoustic properties of the porous materials used in the airfoil sensor and their effects on the frequency response of the sensor were analyzed and tested. An accurate airfoil was selected, having a smaller thickness-to-chord ratio and an airfoil sensor was designed. The sensor was calibrated acoustically and its flow noise evaluated in the quiet BBN wind tunnel at flow velocities up to 70 m/sec. Results are presented

    A study of the variable impedance surface concept as a means for reducing noise from jet interaction with deployed lift-augmenting flaps

    Get PDF
    The feasibility of quieting the externally-blown-flap (EBF) noise sources which are due to interaction of jet exhaust flow with deployed flaps was demonstrated on a 1/15-scale 3-flap EBF model. Sound field characteristics were measured and noise reduction fundamentals were reviewed in terms of source models. Test of the 1/15-scale model showed broadband noise reductions of up to 20 dB resulting from combination of variable impedance flap treatment and mesh grids placed in the jet flow upstream of the flaps. Steady-state lift, drag, and pitching moment were measured with and without noise reduction treatment

    Study of a porous surface microphone sensor in an aerofoil

    Get PDF
    The porous microphone in an airfoil is described as a directional sensor which rejects flow noise. The airfoil allows the sensor to be rotated in the airflow over a wide range of yaw angles, 0 to 90 degrees, avoiding flow separation over the surface of the sensor and its associated additional flow noise. The microphone is discussed in terms of its acoustic properties, vibration sensitivity, effect of Mach number on the directivity function, and flow noise. Additional information on the acoustic calibration of the microphone, the acceleration sensitivity of the airfoil, stationary source and receiver in a moving gas, acoustic tests in airflow, and flow noise tests of the airfoil porous surface sensor is included

    Schekel-Fragen

    No full text
    corecore