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ABSTRACT

The feasibility of quieting the externally-blown-flap (EBF)
noise sources which are due to interaction of Jet exhaust flow
with deployed flaps was demonstrated on a 1/15-scale 3-flap EBF
model. Sound field characteristics were measured and noise
reduction fundamentals were reviewed in terms of source models.

Tests of the 1/15-scale model showed broadband noise re-
ductions of up to 20 dB resulting from combination of variable
impedance flap treatment and mesh grids placed in the Jet flow
upstream of the flaps. Steady-state 1lift, drag, and pitching
moment were measured with and without noise reduction treatment.
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A STUDY OF THE VARIABLE IMPEDANCE SURFACE CONCEPT AS A
MEANS FOR REDUCING NOISE FROM JET INTERACTION WITH
DEPLOYED LIFT-AUGMENTING FLAPS

by Richard E. Hayden
Yoram Kadman
Robert C. Chanaud

Bolt Beranek and Newman Inc.

SUMMARY

A critical unresolved problem associated with the
externally-blown-flap (EBF) jet-stream type 1ift augmentation
concept for STOL aircraft is the reduction of noise due to the
interaction of the jet exhaust with the deployed flaps during
the takeoff and approach phases of flight. The purpose of
this study was to investigate the feasibility of using flaps
with variable impedance surfaces as a possible means of noise
reduction.

Measurements of farfield sound pressure, lift, drag, and
moment of the wing/flap system were made for the unmodified
flaps and for a number of flap systems modified by the use of
variable impedance surfaces. No attempt was made to optimize
noise reduction versus aerodynamic performance.

The findings of the feasibility study indicated that sub-
stantial reductions of noise due to jet interaction with the
flaps may be realized. The configurations examined in this
study resulted in some decrease in aercdynamic performance.

In addition to direct treatment of the flaps, it was found
that a mesh-like structure properly located in the jet may pro-
vide significant additional noise reduction. Broadband re-
ductions on the order of 10 dB were realized using variable
impedance treatment of the flaps and further reductions on the
order of 10 dB were realized using screens to break up the jet.
Lift losses for both the takeoff and approach flap settings
were on the order of 10 to 25%. Drag increases were observed
to be between 15 and 40% for the approach setting and 40 and
100% for the takeoff setting. In view of the limitations on
available materials and the gross nature of the survey, it is
thought that these aerodynamic losses may be reduced substantially
through optimization studies.



The need for a clear understanding of the relative im-
portance of the various noise source mechanisms in order to
optimize noise treatment of specific configurations is well
established. A good understanding of source mechanisms tends
to minimize the quantity of treatment required and could thus
lead to substantial reductions in the aerodynamic penalties
associated with use of variable impedance surfaces.




INTRODUCTION

The General Problem

The externally-blown-flap design in its unmodified state
is expected to generate noise far in excess of practical goals
which have been established for the operation of future com-
mercial transport aircraft. Current estimates of noise from
an EBF-type STOL aircraft in approach and takeoff modes place
the noise levels between 15 and 30 dB in excess of the design
goal. When selecting noise reduction techniques for any air-
craft, attention must be focused on minimizing attendant weight,
1ift, drag, and thrust penalties. To date, noise reduction
concepts attempted on the EBF have been largely unsuccessful,
or at least unacceptable in terms of total system performance.
- So far, the "mixer nozzle'" noisenreduction: concept, which
attempts to reduce the velocity of the jet interacting with
the flaps, has received the most attention. This concept in-
volves substantial welght penalties and in tests reported to
date [References 1, 2, 3] has not provided noise reductions
at all near the levels required to meet design goals. This
report describes an investigation directed at noise reduction
based upon a detailed understanding of the source character-
istics and, accordingly, concepts for substantial noise re-
duction.

Method of Attack

Before attempting specific treatments for the EBF, models
of each of the potential noise sources were developed and it
was shown that virtually all existing experimental data give
strong evidence in support of these models. It was also
shown that further study is required to rank order the various
sources for specific flap/nozzle configurations. With this
physical insight into the problem, noise reduction schemes
can be investigated on an orderly and rational basis.

The Basic Experimental Configuration

The three-flap configuration tested in this study
represents (at 1/15-scale) the configuration currently being
considered by NASA. The nozzle used was of the simple con-
vergent type and had an exit diameter of U4.45 ecm (1.75 in.)
with which exit velocities (of 70°F air) from O to 320 m/sec



(0 to 1050 fps) were possible. The orientation of the nozzle
relative to the flaps is shown in Figure 1 for the approach
and takeoff flap settings. Acoustic measurements were made
in an anechoic space in the "flyover'" plane, i.e., in a plane
through the jet axis and normal to the spanwise direction of
the wing. A photograph of the wing/flap segment is shown in
Figure 2.

Scope of Report

The remainder of this report presents a discussion of
fundamental aspects of sound generation by turbulent flows
interacting with flap-like surfaces and the implications of
these fundamental concepts in terms of nolse reduction.
Acoustic and aerodynamic data on the basic three-flap con-
figuration are presented, as are the corresponding data for
a number of cases where variable Iimpedance surfaces have been
employed for noise reduction purposes.
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FUNDAMENTAL CONCEPTS OF NOISE GENERATION AND REDUCTION

Sources of Noise

When a free jet is directed at flap-like surfaces, noise
may arise as a result of:

1. 1ift and drag fluctuations of the flaps;

2. 1nteraction of turbulence with the leading and
frailing edges;

3. direct radiation from the surface boundary layer;

4, wvibration of the flap surfaces; 4

5. Jjet-like noise from the free shear layer ("mixing"
noise).

For the three-flap EBF system, jet velocities between
500 and 900 fps have been considered; it is shown in Figure 3
that when the flap surfaces are introduced into a flow in that
Mach-number range, the noise due to the interaction of the
flow with the surfaces dominates the total acoustic output of
the system. It is useful at this point to attempt to eliminate
the secondary sources from the above list so that attention
may be focused on the dominant noise producing mechanisms.

Flap vibration is not likely to be a predominant contri-
butor to the sound field; furthermore, due to fatigue life
requirements, skin vibration ultimately must be controlled
without altering the aerodynamic characteristics of the flaps.
Direct sound radiation from the surface turbulent boundary
layer is only important on surfaces which are very large with
respect to typical acoustlc wavelengths, and it is currently
thought that sound levels from this source are completely
dominated by "edge noise" when a trailing edge is also immersed
in the turbulent flow. "Mixing" noise from the free shear
layer is obviously insignificant in this case.

Thus, two major source cateogries, (1) and (2) above,
remain to be considered in attempting to understand the
noise-producing processes associated with the EBF concept.

"Whole body'" dipole sources. Impingement of jet turbu-
lence on the flaps causes fluctuating 1ift and drag forces
which act substantially in phase over the entire flap. Sources
of 1ift and drag fluctuations at those frequencies which have
acoustic wavelengths much larger than the characteristic
dimensions of the source are characterized as point dipoles.




"(9NILL3IS dV14 HIVOUddVY) ALIJOTIA °“SA YY1d3dS ANNOS QI3Id ¥Vd TVIIdAL

(ZH) ADN3NO3Y4 ¥ILN3ID ANVE 3AVLOO QY¥IHL-3NO

"€

‘914

00S‘IE 000'9L 0008 O0O00Y 0002 000l 00¢ 0¢ze Gel €9 S'le w_.Ow
R RNERES LR Il RN EEE [
(Sd4 00t) =
oL
a
—Hog @
0
m
vy o
lr 06 m
.l._l | _w
A a S
a
il >
r_l.lf 00l T
ILI.L.LI
(Sdd 0£9)
S/W 26| — INOV 13 ———-—
! ] @3A017d3A Sdv 14 ——— (o1
_ 4 (Sdv14 MO138) 206 = g
(Sdd 622) s/wizz 14 =
(Sd4 006) s/w 12 :
Lev b et bbb brr bbb

ocl

13A37 34NSS34d ANNOS ONVE 3AVLO0 QYIHL1-3NO



The sound power I per unit bandwidth Aw=2m from a point
dipole can be described in terms of the fluctuating forces as

where II = the
w = the
bp(w) = the
P = the
c = the

0

All

Aw

o (w) w?
12mpc}

sound power

radian frequency

force spectral density
ambient density of the medium

isentropic sound speed in the medium.

The aerodynamic forces may be represented in terms of mean

flow parameters and

FA = F

where F

fluctuating flow parameters; namely,

.3 1y 2
Cp * »p (U+u') zxzy

(2)

(U%+2U0u'+...) 2.2
X"y

ss is the steady-state component of the force

F' is the fluctuating component of the force

p 18 a steady-

state aerodynamic coefficient

is the mean axial velocity

u' is the fluctuating velocity component

2. and Ry are turbulence length scales in the axial and

transverse directions respectively.

The fluctuating component is then

t = = 2 E'
F Cp P (Uu") zxzy C,eU zxzy <U >. (3)



The frequency spectrum of the forces may be expressed in terms
of the turbulence intensity spectral density ¢I(w),

2 2

<1>F(w) = [CAQUZ zxzy} @I(w) « qz'@I(m) {zxzy] (1)

Note that for a round subsonic free jet, the length scales
L. and &_ vary with distance from the nozzle exit as does
tfe turbitllence intensity (u'/U), and, at a given normalized
distance x/D from the nozzle, the turbulence intensity
spectrum (with frequency normalized on a Strouhal

basis) is essentially invariant with exit velocity. The
length scale distributions are also essentially invariant
under the same restrictions. Thus, the length scales are
directly proportional to D,, the nozzle exit diameter, over
a broad velocity range (i1.e., if.D, is changed, then the
length scales zx and Zy change proportionately).

The characteristic frequency w_ of the force fluctuations
is related to the mean eddy convectfon velocity Uc and the
longitudinal length scales lx,

U .
c U
W, 2 7= ® =, (5)
c Qx D0

These simplifications lead to a model based solely on mean
flow parameters: :

2
. 2
1—39- (pU2D 2)
I = w?F® 0 ¢

3
0

l2ﬂpcz pc

i.e., Mo« —— (6)

This expression exhibits the familiar U® velocity dependence
and the "area factor" D§.

The expression for farfield sound pressure for a finite
("noncompact") dipole source may be written as:

10



--QF(w) K cos?6 (7)

o (r,8 w) = .
p’ o 16m2r? 1+k2a?

where ® 1is the acoustic pressure spectral density
p
k = éi is the acoustic wavenumber
0

a is the characteristic source radius which can be taken
as 1/2 the flap chord C,

9,0, and r are geometric parameters as given in Fig. b,

The implications of this expression at large valges of ka in terms
of speed dependence of the overall sound level will be discussed

in a later section.

Trailing edge wise source. The convection of turbulent
boundary layer or wall jet pressure fluctuations past a trailing
edge results in the imparting of momentum fluctuations to the
fluid medium at the edge. Thus, the edge may be considered to
be a pressure release point where the impedance to the hydro-
dynamic pressure fluctuations in the plane of the surface
abruptly changes from infinite to finite (tending toward pc ,
the characteristic impedance of the medium, as a lower bound) .
Sources of momentum fluctuations may be appropriately modeled
as simple dipole sound sources. Before considering the
general distributed source, one might first consider a model
for a single correlation area of pressure at the trailing edge
of a rigid surface. If the source of the fluctuating force
is regarded as a sphere of radius a, exerting a force on the
‘medium along a preferred axis, then the source may be approxi-
mated by a point dipole model whose sound power is given by
Egq. 1. Of course, replacing the fluid mechanical source with
an oscillating sphere does not represent the physical phenomena
accurately, but does allow one to visualize qualitative features
of this source.

In the edge noise model [References 4, 5, 6] F is again
assumed to be proportional to the free-stream dynamic pres-
sure times a correlation area A_ (F « 1/2pU%A ), where A
is defined as the product of a longitudinal (Streamwise)
correlation length 2_and a spanwise correlation length 2
The characteristic f%equency of the force (i.e., pressure
fluctuations) is usually found to be proportional to U/SLX S0
that fZX/U = constant.

Thus, the sound power from a single radiating area on a
surface near the edge is

11
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€ — L[] 2 . 2 2
HD ; (2ﬂU/£X) (l/2pUm2X2y)
12Trpc0
U%p% 2
HDcx:.___g_ . (8)
o3

0

This approach may be extended to develop a model for an edge
immersed in a large number of such small-scale pressure fluctua-
tions. 1If, over the edge span W, there are n uncorrelated
individual sources, n = W/ky, the total power from the edge

pU;lyW
Teotal & %5 — (9)

C
0

Since it has been shown that the true source can be replaced
exactly by the fluctuating wall pressure (by Curle's integral of
Ref. 7), the wall pressure can be viewed as representing the
"strength of the sound source. It then follows that the proportion-
ality constant relating the two sides of Ea. 9 would be on the order
of (py/am)? - the ratio of fluctuating surface pressure to free-
stream dynamic pressure. This ratio is known to vary sub-
stantially between various classes of viscous flow fields -
usually between the orders of 107! and 10~" for turbulent
boundary layers and turbulent wall jets. However, the current
state of knowledge of edge noise does not include adequate
documentation of the variation in trailing edge noise over a
wide range of (pw/qm) levels.

The directivity of the traliling edge source is substantially
influenced by the presence of the surface. The patterns pre-
dicted and observed by Hayden and Chanaud [References 3, 4, 5]
are shown in Fig. 5. The same type of directivity was observed
in the current study of the corresponding leading edge source
in the presence of a semi-infinite surface (Appendix A).

13
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Leading edge nmoise source. When a turbulent jet impinges
on the leading edge of a flap or plate-like surface whose
characteristic dimensions are large with respect to character-
istic acoustic wavelengths, the source may be modeled as a
distribution of point dipoles in the same manner as the trailing
edge source.

As was discussed earlier, in an unmodified free jet, the
normalized turbulence intensity spectrum and length scales at
a point (or in a plane) are essentially independent of nozzle
exit velocity. The leading edge source strength F for a single
correlation area is

F « Pe kxly,
where p_. 1s a characteristic fluctuating pressure which is
related”to the inflow parameters¥* by

P, = C, % p (Utv')? (10)

where Cp is the pressure coefficient and v is the turbulent
component normal to the jet axis. Using the simplifications
developed previously, the source strength can be written

o« 2 v'. 2
Fe UL §; op(w) « pUL 8 0 (w).

Again, the characteristic frequency is

w w2
c L.
X

The total leading edge sourcevstrength is the sum of the
individual source strengths across the leading edge. If the
wetted span is WC, the total sound power is

This gross approach neglects the existence of pressure fluc-
tuations which are already in the jet and convecting with it;
however, one may simply account for such pressures once they
are known. .
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. cC
where m ~ — . Thus

2
. W
m <2, > Cp p4U SLX [} @I(m)

<4
=

- 2116
= cp p2U zy W, @I(w) (11)

Since U, &y, W , ¢.(w) are all proportional to the norma-
lized dlstance from the nozzle, (x,D ), and &, and W_ at any
point vary in direct proportion to D the overall lgading edge
sound power can be expressed as

« 2 ys (X) p2 X X X '
Ik Cpp U (D) Dem, (D)nz(D>n3<D) s (12)

where n,, n,, and n, are arbltrary descriptors of the variation
of W,, ﬁy and o) (w) with normalized distance from the nozzle.

Q2

Basis for Spectral Normalization of all Flap Noise Data

It has been shown that the overall levels for whole body
dipolei leading, and trailing edge sources are all related to
U®, D,* and p and that characteristic frequency distributions
(Strouhal spectra), for a given geometry, vary directly with

velocity and inversely as the nozzle diameter.¥

e ——
It will be shown later that for kz>>1, the overall levels for
the whole body dipole component depend on U* instead of US.

16



Thus, the following normalization is suggested:

pU®D?2

r2c?
0

W @p(w) = constant,

where r is the distance to the observation point. A normalize
sound pressure level may thus be defined by the ratio :

£D
D/U -+ & (TT , r0>

I = 10 log (13)
szGDZ
2,2

r-c
0 0

In terms of easily measurable parameters, the normalized sound
pressure level P(fc) is

r(f,) = 1/3 OB SPL(f_,r ) + 20 log (p, )

ref

-10 log (p?U°D?) + 10 log (r2c?) + 6.3 dB
(14)

where p . is the acoustic reference pressure, 1/3 OB SPL (fc,ro)
is the one-third octave band sound pressure level in dB
(re pref) at a center frequency f, and an observation radius r,.
Note that for specific geometries, the above expression
must be applied along each specific azimuth with respect to
the source orientation, since the source directivity function
was not included in the analysis. Such a normalization has been
performed on the data shown in Figure 2 - the farfield sound
spectra below the wing for the approach setting. The resultant
normalized spectrum is shown in Figure 6, where it may be seen
that the collapse of data is excellent, which tends to verify
the source models proposed earlier.

17
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Noise Reduction Concepts

The preceding summary of source characteristics helps to
derive suitable noise reduction approaches for the individual
sources. The general categories of noise reduction are:

(1) modify mean flow and geometric parameters;

(2) modify fluctuating component of the flow;

(3) modify the acoustic "transduction" process - the
specific manner in which pressure or velocity fluctuations are
converted into sound. ‘

~
Specific examples are cited below.

Whole body dipole. It is instructive to return to the ex-
pression for sound pressure (Eq. 7) and examine the effect of
modification of turbulence parameters on the whele body dipole
sound:

o (w) :
<I)p(r',e,"b,w) - L [ k*

cos?6, (15)
16m%r? l+k2(g)2
2

taking %, half the flap chord, to be the characteristic source

radius.

The force spectral density @F(w) is given by the expression
(Eq. 4):

2n(w) = C,po u* g, by 01 (). (16)

It must be noted here that C,, the steady-state aerodynamic
coeffieient, must be supplemented with an unsteady counterpart,
such as a modified Sears function in three dimensions, which
gives reduced 1ift and drag response for decreasing values of
QX/C and ly/C.

The acoustic wavenumber, k = w/c,, may be rewritten as

u/8 4
kK % X, (17)-

o
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Substituting Egs. 16 and 17 into Eq. 15 results in

2
U/,Q,X
o

2
<I>p(r,9,¢,k) ® 2 21 (w) (p L 2y) <U/2X>2<c>2
1+ =

C, 2

(18)

It is now evident how the'whole body dipole sound will
respond to changes in zx,zy and ®I(w):

1. Decreasing the turbulence intensity ®I(w) produces a
corresponding drop in sound pressure.

2. Decreasing turbulence scales decreases the rate of
increase of sound output with frequency above

cC_UuU ¢
S-Sl i 2

i.e., the rate of sound output eventually becomes dependent
only upon the shape of the turbulence spectrum, and not on

w? as in the point model. Furthermore, this implies that the
sgeed dependence of the whole body dipole eventually becomes
U* and not the U® associated with point sources (ka << 1).

3. Decreaéing turbulence scales lowers the '"threshold"
frequency at which aerodynamic forces begin to decrease due to
cancellation effects (Sear's function effect).

Thus, to reduce whole body dipole sound, reduce U, &7,
2_,% Dby proper selection of flap location or by intentional

mddi¥ication of the flow field.

Leading and trailing edge dipoles. The argument presented
above can also be applied to the leading and trailing edge
sources., However, with these sources, it is possible to modify
the physical process by which nonradiating fiuid disturbances
are converted into sound at the edge. One may modify the local
impedance (porosity) of the surface to accomplish this end.
Thus, the appropriate noise reduction techniques for the edge
sources are: -

20



(1) reduce &_, the eddy dimension in the spanwise
direction; J

(2) reduce velocity and turbulence intensity levels (or
surface pressure levels for the trailing edge source);

(3) modify the surface impedance locally.

Summary of Noise Reduction Concepts for the EBF
Modify foreing function (flow).

A. Change mean flow parameters
l. 1lower U
2. decrease D
3. reduce p

B. Change unsteady component of flow
1. reduce overall turbulence levels
2. reduce length scales

Modify transduction process.

1. Whole body dipole sound. (Can only modify the aero-
dynamic transfer function by the same process suggested above -
produce a large ratio of C/QX) *

2. Edge sources. Vary“ edge impedance to create a smooth
transition from the rigid surface to the fluid medium.

—
Whole body forces may originate at the leading and trailing
edges as a result of large scale flow disturbances therej; thus,
treating the leading or trailing edge may reduce the whole body
component of the sound field.

21



- SUMMARY OF EXPERIMENTAL OBSERVATIONS
ON BASIC THREE-FLAP CONFIGURATION

Acoustic Data

Sealing laws based on mean flow parameters. Measurements
of sound radiated from jet interaction with the flaps were
taken in an anechoic space in the acoustic and geometric
far field of the flaps (kr >> 1 for frequencies above 300 Hz,
and kC >> 1 for frequencies above 1000 Hz). The measurement
plane was the vertical plane passing through the Jet center-
line (i.e., the "direct flyover" plane). The spectra showed
U® speed dependence and linear shifting of frequency with speed,
which 1s consistent with the predictions of the edge dipole
models developed earlier. Typical "raw data" are shown in
Figure 3 for exit velocities of 121, 192, 221, and 274 m/s
(400, 630 725, 900 fps) for the 90° observation position (see
Figure 7 for layout). As shown earlier these data may be
normalized on the basis of Eq. 1l4, thus allowing one to predict
farfield spectra for a geometrically similar flap system of any
scale. Typical normalized sound spectra for the cruise, takeoff
and landing flap settings for different observation angles are
shown in Figures 8-10 (U, between 400 and 900 fps).

Directivity characteristics. As shown in the previous
section, the various potential noise sources exhibit different
directivity patterns. When these patterns are considered
together with the observed directivity of a given flap, they
should provide some insight into the predominant noise source(s).
However, due to the varying orientations of the various source
axes in the 3-flap EBF, this is not a particularly useful
dlagnostic tool at this stage.

Typilcal observed directivity patterns are shown in Figures
11-13, again for the cruise, takeoff, and landing settings,
respectively. PFor the crulse setting, the obvious nolse source
is "trailing edge" noise and the directivity pattern in Figure 11
clearly exhibits the expected cardiod-like pattern associated
with this source, with maximum radiation forward of the wing.
The directivity patterns for the takeoff and approach flap-
settings offer fewer direct clues as to the predomlnant noise
source. However, in all cases, substantial sound is radiated
forward and minima are observed in the direction of the trailing
edge of the third flap, which agailn suggests that the trailing
edge source may be very significant. More conclusive studies

22
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are required to rank order the various sources.

Comparison with earlier NASA data. Although there are no
acoustic data on the three-flap EBF with which the current data
may be compared, an extrapolation of the current data may be
compared with data on a 1/2-scale EBF reported by Dorsch et al
[Reference 8].

The data on the 1/15-scale three-flap EBF taken in this
study were extrapolated using Eq. 15 to full scale, 6=85°,
R=500 ft, and an exit velocity of U,> 870 fps (corresponding
to a pressure ratio of 1.7) for the approach flap setting (15°-
35°-50°) and compared with Dorsch's data extrapolated to the
same observation point for a two-flap EBF (flap angles of 30
and 60°) in Figure 14. Agreement at the spectral peak is quite
good although the three-flap EBF data seem to indicate sub-
stantially lower levels at high frequencies. (It has subsequently
been learned that the high-frequency hump in the NASA Lewis data
is due to valve nolse upstream of the nozzle.)

Again, due to configuration differences, comparison of
current directivity data with earlier studies is not highly
meaningful in terms of checking repeatability. However, as shown
in Figures 11-13 and Figure 15, the same general trends are
observed in both cases.

Aerodynamic Data

Velocity profiles normal to wing and flap surfaces, sur-
face pressure fluctuations on flaps, and steady-state aero-
dynamic performance were measured. Velocity profiles and
surface pressure data serve to indicate the extent of the
aerodynamic sound source region as well as relative source
strength on various parts of the flaps. Static 1lift, drag,
and pitching moment serve as a basis for comparison with -
equivalent data for modified flaps.

Velocity profiles. Figure 16 shows the axial locations
of the velocity traverses; in each case the traverse was in a
direction normal to the flap chord centerline, with the axial
component of velocity being measured. The data for the cruise
takeoff and landing settings are shown in Figures 17-19.

Surface o0il flow visualization was used to obtain insight
into the flow direction on the'various»flaps for the respective

30
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270°

OASPL
(dB RE 0.0002

MBAR)
110—0°

180°—~110

FLAP ANGLE EXHAUST VELOCITIES

® 30°-60° CORE: 725 FPS

B 10°-20° 90° FAN: 582 FPS

A 0° (RETRACTED) MICROPHONE RADIUS: 50' |
& PYLON-NOZZLE ALONE - (FROM REF 8)

FIG. 15. DIRECTIVITY PATTERNS FROM NASA LEWIS TESTS ON 2-FLAP»
EBF: 3 DIFFERENT FLAP SETTINGS.
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FIG. 17(a). MEASURED VELOCITY PROFILE NORMAL TO SURFACE AT
' TRAILING EDGE: CRUISE FLAP-SETTING.
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SETTING.
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16 for traverse location and orientations).

(see Fig.



VELOCITY (fps)

700 —_— T T
: CIRCLED NUMBERS REFER
600F TO TRAVERSE LOCATION % -
(4
500 -
4001 -
300 -
200F -
(4
ook ®\/ / _
7/ .
o) . | ) | ) | 1 { . | N | ]
-4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0
o DISTANCE FROM NOZZLE CENTERLINE (IN.)
700 — — | p— T I
CIRCLED NUMBERS REFER
eook TO TRAVERSE LOCATION .
500} : -
400} / \\ -
'4
o @/ @ N\
A Y
200} ///' \\‘ N
wol - / \ | N -
0 1 ] N ] \ | N ) ] | 4 | n [}
-40 -30 -2.0 -1.0 0 1.0 20 3.0 4.0
DISTANCE FROM 'NOZZLE CENTERLINE .(IN.)
FIG. 18(b). MEASURED AXIAL VELOCITY PROFILES IN SPANWISE

36

DIRECTION FOR THREE-FLAP EBF: TAKEOFF SETTING
(see Figure 16 for gemoetry)



("suoL3ejuaLao pue UOE{31ed0| 3SJ4dARU] U0} g *b1L4 99S) .szHHHmm
HOVY0Y¥ddY) 32V4YNS dV1d 1¥207 0L TYWYON S3TI1408d ALIJ0T3IA AIYNSVIW “(e)6l *9I14

('N1) 30v38NS dv14 WO¥ 4 3ONVLSIA

€ 2 L o & 2 L o ¢
7 [ 1 .
w | oL L
L
“ . Il“ —
v v L
Vv L/
“
= 7
“ L
C 1w B
% ‘
= “ |
“
7 | | g
Y o)
7 %
N — L 001
\ 2 “
% % %
7= 2= 002
7 / 7
= N L~ 00¢
7 / 7
W - S = \ooe
L % %
2
— “ — L~ 006
2 % %
L L/ [~
v - 7 = voow
2 v “
| | o | | ¢ | | ¢

o
o
[

37

(Sd4) ALID0T3A



VELOCITY (fps)

700 — T T T T 1T T T
CIRCLED NUMBERS REFER
600F TO TRAVERSE LOCATION NN .
500} i ' \ i
400K ' Q ]
300} / \\ 4
200} / “ -
100} // \ \\ i
o) | . | 3 ! ) ) L 1 Nt { 1 | 4
-40 -3.0 -2.0 -1.0 0 1.0 20 3.0 4.0
DISTANCE FROM NOZZLE CENTERLINE (iN.)
700 Y T Y T M T Y T T T ! 1
CIRCLED NUMBERS REFER
600 TO TRAVERSE LOCATION
e
R
500} / /
400 : .
R /
soof
I <:>'”/
200F° ‘ /
/
- 100} /
0 1 1 | L | 1 | 4 1 1 | 2 | | .
-40 -30 -2.0 -1.0 0] 1.0 20 3.0 4.0
DISTANCE FROM NOZZLE CENTERLINE (IN.)
FIG. 19(b). MEASURED SPANWISE VELOCITY PROFILES FOR THREE -

FLAP EBF AT APPROACH SETTING (see Figure 16 for
Geometry).

38



deployed settings. Representative photographs are shown in
Figures 20 and 21 for a model with twice the span of that used
in other tests. Arrows on the photograph indicate the local
flow direction.

The oll flow patterns for the takeoff flap setting (Figure
20(a) show large regions of spanwise flow and only a small region
of axially-directly flow on flaps 1 and 2. From this evidence
one might logically deduce that the only important sound pro-
ducing regions on flaps 1 and 2 are near the flow centerline
at the leading and trailing edges of these flaps (since the
oil flow gives no information on velocity magnitudes, additional
measurements should yield further information on important
source areas). The flow at the leading and trailing edges of
the third flap is seen to be largely axial over a large part of
the span, thus leading one to deduce that a large widely dis-
tributed source region is found there. From Figure 21, similar
observations may be made for the approach setting.

The velocity profile data indicate that the most extensive
source region is apparently the leading and trailing edges of
the third flap.

Surface pressure fluctuations. Measurements of surface
pressures over the flap surfaces can give a strong indication
of the possible extent of the sound-producing region and can
also define those areas of the flaps contributing most signifi-
cantly to the various parts of the sound spectrum. In this
investigation, point pressure spectra were measured with a BBN
0.1-in. pressure sensor which was mounted flush to the lower
surfaces of the flaps at the locations shown in Figure 22.

Since the incident flow field was expected to be weakly
dependent upon Reynolds and Mach number in the range of interest,
the fluctuating pressures at various points on the flaps should
vary in constant proportion to the mean dynamic pressures re-
gardless of the exit velocity. Similarly, the spectra of
fluctuating pressures should shift toward high frequencies
linearly with increasing exit velocity. Thus, once such scal-
ing is established, detailed surveys of pressure spectra on
the flaps can be carried out at one intermediate velocity.

The procedure for normalization of fluctuating pressure
level (FPL) is as follows:
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FIG. 20(a). FLOW VISUALIZATION OF LOWER SURFACE OF FLAPS:
TAKEOFF SETTING (ARROWS INDICATE FLOW DIRECTION)
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FIG.

20(b).

FLOW VISUALIZATION OF UPPER SURFACE OF FLAPS:
TAKEOFF SETTING (ARROWS INDICATE FLOW DIRECTION).
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FIG. 21(a). FLOW VISUALIZATION OF LOWER SURFACE OF FLAPS:
APPROACH SETTING (ARROWS INDICATE FLOW DIRECTION).
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FIG. 21(b). FLOW VISUALIZATION OF UPPER SURFACE OF FLAPS
APPROACH SETTING (ARROWS INDICATE FLOW DIRECTION).
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FPL = 20 log(p/q) = 20 log(p/p,. p) + 20 log p

norm ref

+ 20 log q, (19)

where q = 1/2 pUZ2.

For p =2 x 10"" pbar one arrives at a simple engineering

ref
equation for the normalization:

- £t
FPL, o = FPL_ g = 69.1 - 40 log U [EEE] . (20)

The validity of the above normalization is demonstrated in
Figures 23 and 24.

Figure 23 duplicates the output of the one-third octave
band analyzer for four different velocities. Figure 24 shows
the same curves after they were normalized by use of Eq. 20.

The above data were taken at pressure-sensor location 3C6
when the flaps were in approach setting.

Overall "point" FPL for some representative locations on
the flaps (approach flap setting) are shown in Table I.

TABLE I. TYPICAL FLUCTUATING PRESSURE LEVELS ON FLAPS

Pressure-Sensor OAFPL for U, = 400 fps
Location (dB re 0.0802 pbar)
1c3 155.7
2C3 139.8
3C3 150.7
1T6 143.0
2T6 143.4
3T6 147.3
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The surface pressure data on all three flaps show a strong
dependence on flap setting and ‘location with respect to the
center line of the flow. High levels were observed in all
cases as shown in Figures B.1-B.18 (Appendix B).

For the takeoff flap setting (0°-20°-40°), the highest
levels observed were near the trailing edges of the second
(20°) flap at the leading edge of the third flap, and along a
relatively large part of the trailing edge of the third (40°)
flap. For the approach setting (15°-35°-50°), generally higher
levels were noted and again the highest levels appeared near
the trailing edges. On the first (15°) flap, the levels fell
off quickly away from the flow centerline (Figures B.10-B.12).
On the second (35°) flap, the highest levels were at the trailing
edge but a significant distance from the centerline (Figures B.13-
B.15). Considerably greater spanwise extent of high level pres-
sure fluctuations exists on flap 2 than on flap 1.

Flap 3 (50°) is subjected to the highest pressure levels,
and a very large span of the tralling edge was immersed in high
level fluctuating pressures (Figures B.16-B.18).

Statie lift, drag, and pitching moment. The static 1lift,
drag, and moment resulting from deployment of the flaps were
determined (without simulation of forward speed effects) using
an eight-element six-degree-of-freedom strain gauge force
balance (see Figure 2).

The coordinate system to which all measurements are referred
is shown in Figure 25. The 1lift, drag, and pitching moment for
the takeoff and approach flap settings are shown in Figures 26,
27, and 28. These curves show that 1ift and pitching moments
vary in direct proportion to the dynamic pressure as expected;
however, the drag increased at a rate slightly less than q,A,
the exit dynamic pressure times exit area. This data will be
used in the next section as a basis for evaluating aerodynamic
performance penalties assoclated with the modifications implemented
for noise control purposes. (The pitching moment was normalized
using the distance from the center of the force balance to the
leading edge of the third flap - see Fig. 25 - and the usual quO).
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SUMMARY OF OBSERVED NOISE REDUCTIONS AND AERODYNAMIC PERFORMANCE
PENALTIES ASSOCIATED WITH VARIABLE IMPEDANCE SURFACES

This section summarizes exploratory experiments to assess
the feasibility of (1) using variable impedance surfaces to
modify the acoustic transduction process associated with edge
noise and (2) modifying the jet flow field with mesh grids
(screens were used) to alter length scales and turbulence
intensities.

Description of Hardware

The variable impedance concept relies heavily on the ability
to treat the surfaces appropriately. 1In the time period avail-
able for this study, no materials having both spatially varying
impedance and reasonable structural integrity were located.
Therefore, a fiber metal sheet of uniform impedance was used
and gross effects were obtained by either punching holes in the
sheet, or by varying the air gap behind it. The material used
has a flow resistance of approximately 10 to 15 Rayls and was
approximately 0.030 in. thick. The material was either applied
to the leading and trailing edges of the flaps (which were
hollowed out to about 1/U4-chord in each case) or deployed as a
continuous sheet over the solid or '"porous" flaps. These con-
figurations are illustrated schematically in Figure 29.

The concept of reducing eddy scales and turbulence intensity
with mesh grids placed in the jet was investigated for commercially
available mesh screens - either "fine mesh" (15 meshes per inch,
70% open area) or "coarse mesh" (4 meshes per inch, 81% open
area)., The screen was deployed at a number of locations as
shown in Figure 30.

Acoustic Data

The nolse reduction achieved using both the variable im-
pedance surface and the mesh grid techniques was found to be
very sensitive to details of the various configurations.
Figures 31 and 32 compare measured data at the 90° position for
the takeoff flap setting for variable impedance surfaces and
mesh grids respectively. Figures 33 and 34 present similar
data for the approach flap setting. The noise reductions were
found to be largely independent of observation angle as is 1l-
lustrated by Figures 35 a-d.
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Aerodynamic Data

Lift and drag were measured for the modified flaps and
compared with the unmodified flaps in Tables II and III. The
aerodynamic losses observed indicate trends only, since materials
limitations and lack of information on the predominant sources
have yet to be overcome.
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TABLE II
ACOUSTIC AND AERODYNAMIC COMPARISONS

TAKE-OFF FLAP SETTING - RANKING BY LIFT AND DRAG

a
Lift Factor Representative
(fraction of nominal Prag noise reduction

Configuration unmodified flap value) Factor @ St=1 (dB)

Solid Flaps 1 1 0

Solid + Coarse mesh grid: 0.86 1.42 7

(1 Layer) ‘

Solid + FMP Sheet 0.84 1.8 7-12

Solid + Fine mesh grid : 0.79 2.10 10-15

Solid + Coarse mesh grid 0.74 2.04 8.5

(2 layers)

Porous Flaps 0.72 2.0 6-8

Porous Flaps + FM Sheet 0.72 2.0 8-10

Solid + FM Sheet + Coarse 0.71 2.7 11

mesh grid

Solid + coarse mesh grid 0.68 2.4 -

(3 Layers)

Solid + FM + Fine mesh grid 0.66 2.8 14-18

Porous + Fine mesh grid 0.615 2.82 18-20

8Noise Reductions were often found to be sensitive to very small
changes in configuration, whereas little effect of these changes
was noted in 1lift and drag.

PpM = Fibermetal Sheet (10 Rayl)
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ACOUSTIC AND AERODYNAMIC COMPARISONS

TABLE III

APPROACH FLAP SETTING - RANKING BY LIFT AND DRAG

Lift Factor
(fraction of nominal
unmodified flap value)

Configuration

Solid

Solid + Coarse mesh grid
(1 Layer)

Solid + Fine mesh grid
Solid + FMP Sheet

Solid + Coarse mesh grid
(2 Layers)

Porous Flaps + FM Sheet
Solid + FM + Coarse mesh grid
Porous Flaps

Solid + Coarse mesh grid
(3 Layers)

Solid + FM Sheet + Coarse
mesh grid (2 Layers)

Porous Flaps + FM Sheet +
Fine mesh grid

Solid + Coarse mesh grid
(4 Layers)

'__I

.84
.79
LT7

.72
.685
.65
.64

.63

.59

.57

.55

Drag

Factor

1.28
1.46

1.32
1.45
1.57

Representativea
noise reduction
@ St=1 (dB)

12
10
6-8

14
15
20-22

18

@Noise Reductions were often found to be sensitive to very small
changes in configuration, whereas little effect of these changes

was noted in 1lift and drag.

b
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SUMMARY AND CONCLUSIONS

Dipole-like sound from jet interaction with the flaps and
their edges dominates the sound output from a subsonic jet/
deployed flap system. J

Point surface pressure measurements show that for the config-
uration studied, the trailing edge of the second flap and
leading and trailing edges of the third flap appear to have
the highest source strengths; the trailing edge of the third
flap is important in all cases.

Analytical similarity models of the sound sources suggest
that varying the surface impedance of the flaps spatially and
breaking up the jet will reduce the sound output of all flap
noise sources, even when no reduction of local mean velocity
is made.

Experimental results using flaps with porous leading and
trailing edges or a porous sheet over the entire flap sur-
faces showed noise reductions of about 10 dB. Performance
penalties were substantial in these pilot tests; however,
further work at larger scale would enable one to more read-
ily configure the edges with the desired spatial impedance
gradient. Also, this study used available materials which
were far from optimum acoustically and aerodynamically. All
these factors point out that the aerodynamic penalties noted
in this gross preliminary survey should not yet be cause for
despair as refinements should retain or increase the present
noise reductions and reduce aerodynamic losses.

Experimental results using mesh grids to break up the jet
showed about 10 dB noise reduction without prohibitive per-
formance penalties. Clever implementation of this concept
could conceivably give the same or more noise reduction with
very small performance penalities.
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APPENDIX A
SUMMARY OF A PILOT EXPERIMENTAL STUDY ON LEADING EDGE NOISE
FROM JET IMPINGEMENT ON A SEMI-INFINITE WEDGE

To supplement the similarity model for leading edge noise
developed earlier in this text, a brief experimental investiga-
tion was conducted on a large wedge (compared_to a wavelength) and
subsonic jet from a round nozzle (diameter 0.25 in. to 0.75 in.

The experimental arrangement is shown in Figure A.1. The nozzle
velocity and position wlth respect to the leading edge were vari-
able. The entire frame was rotatable. about an axis corresponding
to the leading edge for the purpose of making directivity measure-
ments with a fixed far-field microphone. The experiments were
conducted in a small anecholc room whose lower cutoff frequency
was about 300 Hz.

Sound pressure spectra were measured for various nozzle
velocities and positions and for different leading edge configura-
tions. Recalling the theoretical developments presented earlier,
one expects two distinct features of the leading edge noise source:
(1) a 6th power dependence on mean velocity at a constant value
of Strouhal number; (2) a cardioid-like directivity pattern with
a maximum along the plane of the surface and a null in the plane
of the surface "upstream" of the edge (see Figure 5). Further-
more, it is expected that the sound spectra and levels produced
at the leading edge reflect characteristics of the local inflow;
thus, we expect a variation in level and spectral content when
the position of the edge is varied relative to a given nozzle
exit plane.

Basic Sound Field Characteristics

It was found that the sound spectra along a givén azimuth
normalize using the dimensional arguments presented earlier
(Eq. 14). A typical normalized spectrum for a 0.5-in. diameter
nozzle and a sharp leading edge positioned at X/D = 7.5 is shown
in Figure A.2. For the range of exit velocities studied (400 fps
to 900 fps), variations from the curve shown were *1 dB.

The directivity was measured using both the wedge shown in
Figure A.1 and a flat plate with a sharpened leading edge. Both
cases substantially verified the "theoretical" directivity plots
of Figure 5, except where some convective refraction of the sound
was expected along the axis of the flow. The data for the flat
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plate are presented in Figure A.3. Effects of source area finite-
ness and secondary sound sources are evident in Figures A.3(b)
and A.3(c), but the basic curves show good agreement with the
predicted patterns.

The effect of the position of the edge relative to the
nozzle was strong as is demonstrated in Figure A.l4. One could
use this curve to predict the effect of moving a nozzle away
from or toward a flap.

Effects of Modified Leading Edge.

Two significant modifications of the basic sharp, rigid,
leading edge structure are of interest — leading edge roundness
and a nonrigid (variable 1mpedance) structure. Figure A.5 shows
that the effect of increasing leading edge radius 1s to reduce
the radiated sound. Figure A.6 shows that replacing the entire
tip of the wedge with one made of low-impedance fibermetal (10
Rayl flow resistance) is to reduce dramatically the radiated
sound (in all directions).

Thus, the leading edge is now verifled to be a potent source
of sound when placed in a turbulent inflow. The observed sound
field characteristics tend to support the distributed, "half-
baffled"™ dipole model developed earlier. The noise reduction
achieved with the porous tip is consistent with the variable
impedance concept.
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FIG. A.3(b).
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APPENDIX B
SUMMARY OF SURFACE PRESSURE SPECTRA ON FLAPS

(See Fig. 22 for Layout)

Figures B.1 — B.9; Takeoff Flap Setting

Figures B.10~ B.18; Approach Flap Setting
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