122 research outputs found
Seismic Assessment of Arch Dams Using Fragility Curves
In the present paper, the IDA approach is applied to analyzing a thin high arch dam. The parameters of Sa, PGA and PGV are used as intensity measure (IM) and the overstressed area (OSA) is utilized as engineering demand parameter (EDP) and then, three limit states are assigned to the considered structure using the IDA curves. Subsequently, fragility curves are calculated and it is showed that the PGA is a better parameter to be taken as IM. In addition, it is found that the utilizing the proposed methodology, quantifying the qualitative limit states is probable. At last, having the fragility curves and considering their slope in addition to the other routine data which can be extracted from these curves, one may be able to conclude that in what performance level the considered dam body seems to be weak and needs retrofitting works
Nonlinear dynamic analysis of moving bilayer plates resting on elastic foundations
The aim of this study is to investigate the dynamic response of axially moving two-layer laminated plates on the Winkler and Pasternak foundations. The upper and lower layers are formed from a bidirectional functionally graded (FG) layer and a graphene platelet (GPL) reinforced porous layer, respectively. Henceforth, the combined layers will be referred to as a two-dimensional (2D) FG/GPL plate. Two types of porosity and three graphene dispersion patterns, each of which is distributed through the plate thickness, are investigated. The mechanical properties of the closed-cell layers are used to define the variation of Poissonâs ratio and the relationship between the porosity coefficients and the mass density. For the GPL reinforced layer, the effective Youngâs modulus is derived with the Halpin-Tsai micro-system model, and the rule of mixtures is used to calculate the effective mass density and Poissonâs ratio. The material of the upper 2D-FG layer is graded in two directions, and its effective mechanical properties are also derived with the rule of mixtures. The dynamic governing equations are derived with a first-order shear deformation theory (FSDT) and the von K´arm´an nonlinear theory. A combination of the dynamic relaxation (DR) and Newmarkâs direct integration methods is used to solve the governing equations in both time and space. A parametric study is carried out to explore the effects of the porosity coefficients, porosity and GPL distributions, material gradients, damping ratios, boundary conditions, and elastic foundation stiffnesses on the plate response. It is shown that both the distributions of the porosity and graphene nanofillers significantly affect the dynamic behaviors of the plates. It is also shown that the reduction in the dynamic deflection of the bilayer composite plates is maximized when the porosity and GPL distributions are symmetric
Analytical, experimental and numerical study of a graded honeycomb structure under in-plane impact load with low velocity
Given the significance of energy absorption in various industries, light shock absorbers such as honeycomb structure under in-plane and out-of-plane loads have been in the core of attention. The purpose of this research is the analyses of graded honeycomb structure (GHS) behaviour under in-plane impact loading and its optimisation. Primarily, analytical equations for plateau stress and specific energy are represented, taking power hardening model (PHM) and elasticâperfectly plastic model (EPPM) into consideration. For the validation and comparison of acquired analytical equations, the energy absorption of a GHS made of five different aluminium grades is simulated in ABAQUS/CAE. In order to validate the numerical simulation method in ABAQUS, an experimental test has been conducted as the falling a weight with low velocity on a GHS. Numerical results retain an acceptable accordance with experimental ones with a 5.4% occurred error of reaction force. For a structure with a specific kinetic energy, the stressâstrain diagram is achieved and compared with the analytical equations obtained. The maximum difference between the numerical and analytical plateau stresses for PHM is 10.58%. However, this value has been measured to be 38.78% for EPPM. In addition, the numerical value of absorbed energy is compared to that of analytical method for two material models. The maximum difference between the numerical and analytical absorbed energies for PHM model is 6.4%, while it retains the value of 48.08% for EPPM. Based on the conducted comparisons, the numerical and analytical results based on PHM are more congruent than EPPM results. Applying sequential quadratic programming method and genetic algorithm, the ratio of structure mass to the absorbed energy is minimised. According to the optimisation results, the structure capacity of absorbing energy increases by 18% compared to the primary model
Primary angiitis of the central nervous system presenting with subacute and fatal course of disease: a case report
BACKGROUND: Primary angiitis of the central nervous system is an idiopathic disorder characterized by vasculitis within the dural confines. The clinical presentation shows a wide variation and the course and the duration of disease are heterogeneous. This rare but treatable disease provides a diagnostic challenge owing to the lack of pathognomonic tests and the necessity of a histological confirmation. CASE PRESENTATION: A 28-year-old patient presenting with headache and fluctuating signs of encephalopathy was treated on the assumption of viral meningoencephalitis. The course of the disease led to his death 10 days after hospital admission. Postmortem examination revealed primary angiitis of the central nervous system. CONCLUSION: Primary angiitis of the central nervous system should always be taken into consideration when suspected infectious inflammation of the central nervous system does not respond to treatment adequately. In order to confirm the diagnosis with the consequence of a modified therapy angiography and combined leptomeningeal and brain biopsy should be considered immediately
Use of Quantitative Pharmacology in the Development of HAE1, a High-Affinity Anti-IgE Monoclonal Antibody
HAE1, a high-affinity anti-IgE monoclonal antibody, is discussed here as a case study in the use of quantitative pharmacology in the development of a second-generation molecule. In vitro, preclinical, and clinical data from the first-generation molecule, omalizumab, were heavily leveraged in the HAE1 program. A preliminary mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model for HAE1 was developed using an existing model for omalizumab, together with in vitro binding data for HAE1 and omalizumab. When phase I data were available, the model was refined by simultaneously modeling PK/PD data from omalizumab studies with the available HAE1 phase I data. The HAE1 clinical program was based on knowledge of the quantitative relationship between a pharmacodynamic biomarker, suppression of free IgE, and clinical response (e.g., lower exacerbation rates) obtained in pivotal studies with omalizumab. A clinical trial simulation platform was developed to predict free IgE levels and clinical responses following attainment of a target free IgE level (â¤10 IU/ml). The simulation platform enabled selection of four doses for the phase II dose-ranging trial by two independent methods: dose-response non-linear fitting and linear mixed modeling. Agreement between the two methods provided confidence in the doses selected. Modeling and simulation played a large role in supporting acceleration of the HAE1 program by enabling data-driven decision-making, often based on confirmation of projections and/or learning from incoming new data
Wrist-Worn Wearables Based on Force Myography: On the Significance of User Anthropometry
Background
Force myography (FMG) is a non-invasive technology used to track functional movements and hand gestures by sensing volumetric changes in the limbs caused by muscle contraction. Force transmission through tissue implies that differences in tissue mechanics and/or architecture might impact FMG signal acquisition and the accuracy of gesture classifier models. The aim of this study is to identify if and how user anthropometry affects the quality of FMG signal acquisition and the performance of machine learning models trained to classify different hand and wrist gestures based on that data.
Methods
Wrist and forearm anthropometric measures were collected from a total of 21 volunteers aged between 22 and 82 years old. Participants performed a set of tasks while wearing a custom-designed FMG band. Primary outcome measure was the Spearmanâs correlation coefficient (R) between the anthropometric measures and FMG signal quality/ML model performance.
Results
Results demonstrated moderate (0.3 â¤|R| < 0.67) and strong (0.67 â¤ |R|) relationships for ratio of skinfold thickness to forearm circumference, grip strength and ratio of wrist to forearm circumference. These anthropometric features contributed to 23â30% of the variability in FMG signal acquisition and as much as 50% of the variability in classification accuracy for single gestures.
Conclusions
Increased grip strength, larger forearm girth, and smaller skinfold-to-forearm circumference ratio improve signal quality and gesture classification accuracy
Evidence-Based PET for Abdominal and Pelvic Tumours
Evidence-based data about the usefulness of positron emission tomography (PET) and hybrid imaging methods (PET/CT and PET/MRI) in abdominal and pelvic tumours have been collected and discussed in this chapter. These data were divided in three sections: (1) gastrointestinal tumours, (2) uro-genital tumours, (3) gynaecological tumours. Several pooled data (diagnostic and prognostic data), clinical settings (e.g. staging, restaging, treatment evaluation) and radiotracers as fluorine-18 fluorodeoxyglucose (18F-FDG), radiolabelled choline and prostate-specific membrane antigen (PSMA) were considered
- âŚ