16 research outputs found

    Validation of high throughput sequencing and microbial forensics applications

    Get PDF
    High throughput sequencing (HTS) generates large amounts of high quality sequence data for microbial genomics. The value of HTS for microbial forensics is the speed at which evidence can be collected and the power to characterize microbial-related evidence to solve biocrimes and bioterrorist events. As HTS technologies continue to improve, they provide increasingly powerful sets of tools to support the entire field of microbial forensics. Accurate, credible results allow analysis and interpretation, significantly influencing the course and/or focus of an investigation, and can impact the response of the government to an attack having individual, political, economic or military consequences. Interpretation of the results of microbial forensic analyses relies on understanding the performance and limitations of HTS methods, including analytical processes, assays and data interpretation. The utility of HTS must be defined carefully within established operating conditions and tolerances. Validation is essential in the development and implementation of microbial forensics methods used for formulating investigative leads attribution. HTS strategies vary, requiring guiding principles for HTS system validation. Three initial aspects of HTS, irrespective of chemistry, instrumentation or software are: 1) sample preparation, 2) sequencing, and 3) data analysis. Criteria that should be considered for HTS validation for microbial forensics are presented here. Validation should be defined in terms of specific application and the criteria described here comprise a foundation for investigators to establish, validate and implement HTS as a tool in microbial forensics, enhancing public safety and national security.Peer reviewe

    Natural Antibiotic Resistance of Bacteria Isolated from Larvae of the Oil Fly, \u3ci\u3eHelaeomyia petrolei\u3c/i\u3e

    Get PDF
    Helaeomyia petrolei (oil fly) larvae inhabit the asphalt seeps of Rancho La Brea in Los Angeles, Calif. The culturable microbial gut contents of larvae collected from the viscous oil were recently examined, and the majority (9 of 14) of the strains were identified as Providencia spp. Subsequently, 12 of the bacterial strains isolated were tested for their resistance or sensitivity to 23 commonly used antibiotics. All nine strains classified as Providencia rettgeri exhibited dramatic resistance to tetracycline, vancomycin, bacitracin, erythromycin, novobiocin, polymyxin, colistin, and nitrofurantoin. Eight of nine Providencia strains showed resistance to spectinomycin, six of nine showed resistance to chloramphenicol, and five of nine showed resistance to neomycin. All 12 isolates were sensitive to nalidixic acid, streptomycin, norfloxacin, aztreonam, cipericillin, pipericillin, and cefotaxime, and all but OF008 (Morganella morganii) were sensitive to ampicillin and cefoxitin. The oil fly bacteria were not resistant to multiple antibiotics due to an elevated mutation rate. For each bacterium, the number of resistant mutants per 108 cells was determined separately on rifampin, nalidixic acid, and spectinomycin. In each case, the average frequencies of resistant colonies were at least 50-fold lower than those established for known mutator strain ECOR 48. In addition, the oil fly bacteria do not appear to excrete antimicrobial agents. When tested, none of the oil fly bacteria produced detectable zones of inhibition on Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, or Candida albicans cultures. Furthermore, the resistance properties of oil fly bacteria extended to organic solvents as well as antibiotics. When pre-exposed to 20 mg of tetracycline per ml, seven of nine oil fly bacteria tolerated overlays of 100% cyclohexane, six of nine tolerated 10% xylene, benzene, or toluene (10:90 in cyclohexane), and three of nine (OF007, OF010, and OF011) tolerated overlays of 50% xylene–50% cyclohexane. The observed correlation between antibiotic resistance and organic solvent tolerance is likely explained by an active efflux pump that is maintained in oil fly bacteria by the constant selective pressure of La Brea’s solvent-rich environment. We suggest that the oil fly bacteria and their genes for solvent tolerance may provide a microbial reservoir of antibiotic resistance genes

    Survey of Extreme Solvent Tolerance in Gram-Positive Cocci: Membrane Fatty Acid Changes in \u3ci\u3eStaphylococcus haemolyticus\u3c/i\u3e Grown in Toluene

    Get PDF
    We exploited the unique ecological niche of oil fly larval guts to isolate a strain of Staphylococcus haemolyticus which may be the most solvent-tolerant gram-positive bacterium yet described. This organism is able to tolerate 100% toluene, benzene, and p-xylene on plate overlays and saturating levels of these solvents in monophasic liquid cultures. A comparison of membrane fatty acids by gas chromatography after growth in liquid media with and without toluene showed that in cells continuously exposed to solvent the proportion of anteiso fatty acids increased from 25.8 to 33.7% while the proportion of 20:0 straight-chain fatty acids decreased from 19.3 to 10.1%. No changes in the membrane phospholipid composition were noted. Thus, S. haemolyticus alters its membrane fluidity via fatty acid composition to become more fluid when it is exposed to solvent. This response is opposite that commonly found in gram-negative bacteria, which change their fatty acids so that the cytoplasmic membrane is less fluid. Extreme solvent tolerance in S. haemolyticus is not accompanied by abnormal resistance to anionic or cationic detergents. Finally, six strains of Staphylococcus aureus and five strains of Staphylococcus epidermidis, which were not obtained by solvent selection, also exhibited exceptional solvent tolerance

    Natural Antibiotic Resistance of Bacteria Isolated from Larvae of the Oil Fly, Helaeomyia petrolei

    Get PDF
    Helaeomyia petrolei (oil fly) larvae inhabit the asphalt seeps of Rancho La Brea in Los Angeles, Calif. The culturable microbial gut contents of larvae collected from the viscous oil were recently examined, and the majority (9 of 14) of the strains were identified as Providencia spp. Subsequently, 12 of the bacterial strains isolated were tested for their resistance or sensitivity to 23 commonly used antibiotics. All nine strains classified as Providencia rettgeri exhibited dramatic resistance to tetracycline, vancomycin, bacitracin, erythromycin, novobiocin, polymyxin, colistin, and nitrofurantoin. Eight of nine Providencia strains showed resistance to spectinomycin, six of nine showed resistance to chloramphenicol, and five of nine showed resistance to neomycin. All 12 isolates were sensitive to nalidixic acid, streptomycin, norfloxacin, aztreonam, cipericillin, pipericillin, and cefotaxime, and all but OF008 (Morganella morganii) were sensitive to ampicillin and cefoxitin. The oil fly bacteria were not resistant to multiple antibiotics due to an elevated mutation rate. For each bacterium, the number of resistant mutants per 10(8) cells was determined separately on rifampin, nalidixic acid, and spectinomycin. In each case, the average frequencies of resistant colonies were at least 50-fold lower than those established for known mutator strain ECOR 48. In addition, the oil fly bacteria do not appear to excrete antimicrobial agents. When tested, none of the oil fly bacteria produced detectable zones of inhibition on Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, or Candida albicans cultures. Furthermore, the resistance properties of oil fly bacteria extended to organic solvents as well as antibiotics. When pre-exposed to 20 μg of tetracycline per ml, seven of nine oil fly bacteria tolerated overlays of 100% cyclohexane, six of nine tolerated 10% xylene, benzene, or toluene (10:90 in cyclohexane), and three of nine (OF007, OF010, and OF011) tolerated overlays of 50% xylene–50% cyclohexane. The observed correlation between antibiotic resistance and organic solvent tolerance is likely explained by an active efflux pump that is maintained in oil fly bacteria by the constant selective pressure of La Brea's solvent-rich environment. We suggest that the oil fly bacteria and their genes for solvent tolerance may provide a microbial reservoir of antibiotic resistance genes

    A Comparison and Integration of MiSeq and MinION Platforms for Sequencing Single Source and Mixed Mitochondrial Genomes

    No full text
    <div><p>Single source and multiple donor (mixed) samples of human mitochondrial DNA were analyzed and compared using the MinION and the MiSeq platforms. A generalized variant detection strategy was employed to provide a cursory framework for evaluating the reliability and accuracy of mitochondrial sequences produced by the MinION. The feasibility of long-read phasing was investigated to establish its efficacy in quantitatively distinguishing and deconvolving individuals in a mixture. Finally, a proof-of-concept was demonstrated by integrating both platforms in a hybrid assembly that leverages solely mixture data to accurately reconstruct full mitochondrial genomes.</p></div

    Single Source Sample Concordance by VAF.

    No full text
    <p>Each single source sample (004, 005, and 047) is characterized by a heatmap, which compares SNP call sets between the two platforms. SNP call sets are plotted by VAF for both the MinION and MiSeq data from 0.05 to 0.95 using increments of 0.05. The MinION VAF is on the x-axis and the MiSeq VAF is across the y-axis. Concordance is determined by calculating the F1-Score using the MiSeq calls as the ground truth. The value of each F1-Score comparison is shown as increasingly darker shades of blue for higher values. The highest F1-Scores are shown for each of the source samples 004, 005, and 047 in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0167600#pone.0167600.g003" target="_blank">Fig 3</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0167600#pone.0167600.s003" target="_blank">S2</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0167600#pone.0167600.s004" target="_blank">S3</a> Figs, respectively.</p

    Coverage and Concordance Circos for 004.

    No full text
    <p>The coverage depth per base is shown for the MiSeq (orange) and MinION (blue) shown on the outer ring using a log10 scale. The inner ring shows concordance at each SNP using a MiSeq VAF of 0.90 and a MinION VAF of 0.65. Text color denotes the categorization of each SNP under the VAF combination providing the highest concordance (F1-Score). Green text indicates true positives and black text is for false negatives present in the MinION call sets. See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0167600#pone.0167600.s003" target="_blank">S2</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0167600#pone.0167600.s004" target="_blank">S3</a> Figs for similar plots of 005 and 047, respectively. Black arrows indicate the locations and orientations of the primers used for amplification.</p
    corecore