2 research outputs found

    Differentially-Expressed miRNAs in Ectopic Stromal Cells Contribute to Endometriosis Development : The Plausible Role of miR-139-5p and miR-375

    Get PDF
    microRNA (miRNA) expression level alterations between endometrial tissue and endometriotic lesions indicate their involvement in endometriosis pathogenesis. However, as both endometrium and endometriotic lesions consist of different cell types in various proportions, it is not clear which cells contribute to variability in miRNA levels and the overall knowledge about cell-type specific miRNA expression in ectopic cells is scarce. Therefore, we utilized fluorescence-activated cell sorting to isolate endometrial stromal cells from paired endometrial and endometrioma biopsies and combined it with high-throughput sequencing to determine miRNA alterations in endometriotic stroma. The analysis revealed 149 abnormally expressed miRNAs in endometriotic lesions, including extensive upregulation of miR-139-5p and downregulation of miR-375 compared to eutopic cells. miRNA transfection experiments in the endometrial stromal cell line ST-T1b showed that the overexpression of miR-139-5p resulted in the downregulation of homeobox A9 (HOXA9) and HOXA10 expression, whereas the endothelin 1 (EDN1) gene was regulated by miR-375. The results of this study provide further insights into the complex molecular mechanisms involved in endometriosis pathogenesis and demonstrate the necessity for cell-type-specific analysis of ectopic tissues to understand the interactions between different cell populations in disease onset and progression.Peer reviewe

    Chemosensitivity and chemoresistance in endometriosis - differences for ectopic versus eutopic cells

    Get PDF
    Research question: Endometriosis is a common gynaecological disease defined by the presence of endometrium-like tissue outside the uterus. This complex disease, often accompanied by severe pain and infertility, causes a significant medical and socioeconomic burden; hence, novel strategies are being sought for the treatment of endometriosis. Here, we set out to explore the cytotoxic effects of a panel of compounds to find toxins with different efficiency in eutopic versus ectopic cells, thus highlighting alterations in the corresponding molecular pathways. Design: The effect on cellular viability of 14 compounds was established in a cohort of paired eutopic and ectopic endometrial stromal cell samples from 11 patients. The biological targets covered by the panel included pro-survival enzymes, cytoskeleton proteins, the proteasome and the cell repair machinery. Results: Protein kinase inhibitors GSK690693, ARC-775 and sorafenib, proteasome inhibitor bortezomib, and microtubuledepolymerizing toxin monomethyl auristatin E were more effective in eutopic cells. In contrast, 10 mu mol/l of the anthracycline toxin doxorubicin caused cellular death in ectopic cells more effectively than in eutopic cells. The large-scale sequencing of mRNA isolated from doxorubicin-treated and control cells indicated different survival strategies in eutopic versus ectopic endometrium. Conclusions: Overall, the results confirm evidence of large-scale metabolic reprogramming in endometriotic cells, which underlies the observed differences in sensitivity towards toxins. The enhanced efficiency of doxorubicin interfering with redox equilibria and/or DNA repair mechanisms pinpoints key players that can be potentially used to selectively target ectopic lesions in endometriosis.Peer reviewe
    corecore