53 research outputs found

    Phosphorylation on PstP controls cell wall metabolism and antibiotic tolerance in Mycobacterium smegmatis [preprint]

    Get PDF
    The mycobacterial cell wall is a dynamic structure that protects Mycobacterium tuberculosis and its relatives from environmental stresses. Modulation of cell wall metabolism under stress is thought to be responsible for decreased cell wall permeability and increased tolerance to antibiotics. The signaling pathways that control cell wall metabolism under stress, however, are poorly understood. Here, we examine the signaling capacity of a cell wall master regulator, the Serine Threonine Phosphatase PstP, in the model organism Mycobacterium smegmatis. We studied how interference with a regulatory phosphorylation site on PstP affects growth, cell wall metabolism and antibiotic tolerance. We find that a phospho-mimetic mutation, pstP T171E, slows growth, misregulates both mycolic acid and peptidoglycan metabolism in different conditions, and interferes with antibiotic tolerance. These data suggest that phosphorylation on PstP controls its substrate specificity and is important in the transition between growth and stasis

    Mycobacterium tuberculosis Virulence Is Mediated by PtpA Dephosphorylation of Human Vacuolar Protein Sorting 33B

    Get PDF
    SummaryEntry into host macrophages and evasion of intracellular destruction mechanisms, including phagosome-lysosome fusion, are critical elements of Mycobacterium tuberculosis (Mtb) pathogenesis. To achieve this, the Mtb genome encodes several proteins that modify host signaling pathways. PtpA, a low-molecular weight tyrosine phosphatase, is a secreted Mtb protein of unknown function. The lack of tyrosine kinases in the Mtb genome suggests that PtpA may modulate host tyrosine phosphorylated protein(s). We report that a genetic deletion of ptpA attenuates Mtb growth in human macrophages, and expression of PtpA-neutralizing antibodies simulated this effect. We identify VPS33B, a regulator of membrane fusion, as a PtpA substrate. VPS33B and PtpA colocalize in Mtb-infected human macrophages. PtpA secretion combined with active-phosphorylated VPS33B inhibited phagosome-lysosome fusion, a process arrested in Mtb infections. These results demonstrate that PtpA is essential for Mtb intracellular persistence and identify a key host regulatory pathway that is inactivated by Mtb

    ORBIT: a new paradigm for genetic engineering of mycobacterial chromosomes [preprint]

    Get PDF
    Current methods for genome engineering in mycobacteria rely on relatively inefficient recombination systems that require the laborious construction of a long double-stranded DNA substrate for each desired modification. We combined two efficient recombination systems to produce a versatile method for high-throughput chromosomal engineering that obviates the need for the preparation of double-stranded DNA recombination substrates. A synthetic targeting oligonucleotide is incorporated into the chromosome via homologous recombination mediated by the phage Che9c RecT annelase. This oligo contains a site-specific recombination site for the directional Bxb1 integrase (Int), which allows the simultaneous integration of a payload plasmid that contains a cognate recombination site and selectable marker. The targeting oligo and payload plasmid are co-transformed into a RecT- and Int- expressing strain, and drug-resistant homologous recombinants are selected in a single step. A library of reusable target-independent payload plasmids is available to generate knockouts and promoter replacements, or to fuse the C-terminal-encoding regions of target genes with tags of various functionalities. This new system is called ORBIT (Oligo-mediated Recombineering followed by Bxb1 Integrase Targeting) and is ideally suited for the creation of libraries consisting of large numbers of deletions, insertions or fusions in a target bacterium. We demonstrate the utility of ORBIT by the construction of insertions or deletions in over 100 genes in M. tuberculosis and M. smegmatis. The report describes the first genetic engineering technique for making selectable chromosomal fusions and deletions that does not require the construction of target- or modification-specific double-stranded DNA recombination substrates

    Host immunity increases Mycobacterium tuberculosis reliance on cytochrome bd oxidase [preprint]

    Get PDF
    In order to sustain a persistent infection, Mycobacterium tuberculosis (Mtb) must adapt to a changing environment that is shaped by the developing immune response. This necessity to adapt is evident in the flexibility of many aspects of Mtb metabolism, including a respiratory chain that consists of two distinct terminal cytochrome oxidase complexes. Under the conditions tested thus far, the bc1/aa3 complex appears to play a dominant role, while the alternative bd oxidase is largely redundant. However, presence of two terminal oxidases in this obligate pathogen implies that respiratory requirements might change during infection. We report that the cytochrome bd oxidase is specifically required for resisting the adaptive immune response. While the bd oxidase was dispensable for growth in resting macrophages and the establishment of infection in mice, this complex was necessary for optimal fitness after the initiation of adaptive immunity. This requirement was dependent on lymphocyte-derived interferon gamma (IFNγ), but did not involve nitrogen and oxygen radicals that are known to inhibit respiration in other contexts. Instead, we found that ΔcydA mutants were hypersusceptible to the low pH encountered in IFNγ-activated macrophages. Unlike wild type Mtb, cytochrome bd-deficient bacteria were unable to sustain a maximal oxygen consumption rate (OCR) at low pH, indicating that the remaining cytochrome bc1/aa3 complex is preferentially inhibited under acidic conditions. Consistent with this model, the potency of the cytochrome bc1/aa3 inhibitor, Q203, is dramatically enhanced at low pH. This work identifies a critical interaction between host immunity and pathogen respiration that influences both the progression of the infection and the efficacy of potential new TB drugs

    Host immunity increases Mycobacterium tuberculosis reliance on cytochrome bd oxidase

    Get PDF
    In order to sustain a persistent infection, Mycobacterium tuberculosis (Mtb) must adapt to a changing environment that is shaped by the developing immune response. This necessity to adapt is evident in the flexibility of many aspects of Mtb metabolism, including a respiratory chain that consists of two distinct terminal cytochrome oxidase complexes. Under the conditions tested thus far, the bc1/aa3 complex appears to play a dominant role, while the alternative bd oxidase is largely redundant. However, the presence of two terminal oxidases in this obligate pathogen implies that respiratory requirements might change during infection. We report that the cytochrome bd oxidase is specifically required for resisting the adaptive immune response. While the bd oxidase was dispensable for growth in resting macrophages and the establishment of infection in mice, this complex was necessary for optimal fitness after the initiation of adaptive immunity. This requirement was dependent on lymphocyte-derived interferon gamma (IFNgamma), but did not involve nitrogen and oxygen radicals that are known to inhibit respiration in other contexts. Instead, we found that DeltacydA mutants were hypersusceptible to the low pH encountered in IFNgamma-activated macrophages. Unlike wild type Mtb, cytochrome bd-deficient bacteria were unable to sustain a maximal oxygen consumption rate (OCR) at low pH, indicating that the remaining cytochrome bc1/aa3 complex is preferentially inhibited under acidic conditions. Consistent with this model, the potency of the cytochrome bc1/aa3 inhibitor, Q203, is dramatically enhanced at low pH. This work identifies a critical interaction between host immunity and pathogen respiration that influences both the progression of the infection and the efficacy of potential new TB drugs

    Two-Way Regulation of MmpL3 Expression Identifies and Validates Inhibitors of MmpL3 Function in Mycobacterium tuberculosis

    Get PDF
    MmpL3, an essential mycolate transporter in the inner membrane of Mycobacterium tuberculosis (Mtb), has been identified as a target of multiple, chemically diverse antitubercular drugs. However, several of these molecules seem to have secondary targets and inhibit bacterial growth by more than one mechanism. Here, we describe a cell-based assay that utilizes two-way regulation of MmpL3 expression to readily identify MmpL3-specific inhibitors. We successfully used this assay to identify a novel guanidine-based MmpL3 inhibitor from a library of 220 compounds that inhibit growth of Mtb by largely unknown mechanisms. We furthermore identified inhibitors of cytochrome bc1-aa3 oxidase as one class of off-target hits in whole-cell screens for MmpL3 inhibitors and report a novel sulfanylacetamide as a potential QcrB inhibitor

    A natural polymorphism of Mycobacterium tuberculosis in the esxH gene disrupts immunodomination by the TB10.4-specific CD8 T cell response

    Get PDF
    CD8 T cells provide limited protection against Mycobacterium tuberculosis (Mtb) infection in the mouse model. As Mtb causes chronic infection in mice and humans, we hypothesize that Mtb impairs T cell responses as an immune evasion strategy. TB10.4 is an immunodominant antigen in people, nonhuman primates, and mice, which is encoded by the esxH gene. In C57BL/6 mice, 30-50% of pulmonary CD8 T cells recognize the TB10.44-11 epitope. However, TB10.4-specific CD8 T cells fail to recognize Mtb-infected macrophages. We speculate that Mtb elicits immunodominant CD8 T cell responses to antigens that are inefficiently presented by infected cells, thereby focusing CD8 T cells on nonprotective antigens. Here, we leverage naturally occurring polymorphisms in esxH, which frequently occur in lineage 1 strains, to test this decoy hypothesis . Using the clinical isolate 667, which contains an EsxHA10T polymorphism, we observe a drastic change in the hierarchy of CD8 T cells. Using isogenic Erd.EsxHA10T and Erd.EsxHWT strains, we prove that this polymorphism alters the hierarchy of immunodominant CD8 T cell responses. Our data are best explained by immunodomination, a mechanism by which competition for APC leads to dominant responses suppressing subdominant responses. These results were surprising as the variant epitope can bind to H2-Kb and is recognized by TB10.4-specific CD8 T cells. The dramatic change in TB10.4-specific CD8 responses resulted from increased proteolytic degradation of A10T variant, which destroyed the TB10.44-11epitope. Importantly, this polymorphism affected T cell priming and recognition of infected cells. These data support a model in which nonprotective CD8 T cells become immunodominant and suppress subdominant responses. Thus, polymorphisms between clinical Mtb strains, and BCG or H37Rv sequence-based vaccines could lead to a mismatch between T cells that are primed by vaccines and the epitopes presented by infected cells. Reprograming host immune responses should be considered in the future design of vaccines

    Host-pathogen genetic interactions underlie tuberculosis susceptibility in genetically diverse mice [preprint]

    Get PDF
    The outcome of an encounter with Mycobacterium tuberculosis (Mtb) depends on the pathogen’s ability to adapt to the heterogeneous immune response of the host. Understanding this interplay has proven difficult, largely because experimentally tractable small animal models do not recapitulate the heterogenous disease observed in natural infections. We leveraged the genetically diverse Collaborative Cross (CC) mouse panel in conjunction with a library of Mtb mutants to associate bacterial genetic requirements with host genetics and immunity. We report that CC strains vary dramatically in their susceptibility to infection and represent reproducible models of qualitatively distinct immune states. Global analysis of Mtb mutant fitness across the CC panel revealed that a large fraction of the pathogen’s genome is necessary for adaptation to specific host microenvironments. Both immunological and bacterial traits were associated with genetic variants distributed across the mouse genome, elucidating the complex genetic landscape that underlies host-pathogen interactions in a diverse population

    Mycobacterium tuberculosis Induces an Atypical Cell Death Mode to Escape from Infected Macrophages

    Get PDF
    BACKGROUND: Macrophage cell death following infection with Mycobacterium tuberculosis plays a central role in tuberculosis disease pathogenesis. Certain attenuated strains induce extrinsic apoptosis of infected macrophages but virulent strains of M. tuberculosis suppress this host response. We previously reported that virulent M. tuberculosis induces cell death when bacillary load exceeds approximately 20 per macrophage but the precise nature of this demise has not been defined. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the characteristics of cell death in primary murine macrophages challenged with virulent or attenuated M. tuberculosis complex strains. We report that high intracellular bacillary burden causes rapid and primarily necrotic death via lysosomal permeabilization, releasing hydrolases that promote Bax/Bak-independent mitochondrial damage and necrosis. Cell death was independent of cathepsins B or L and notable for ultrastructural evidence of damage to lipid bilayers throughout host cells with depletion of several host phospholipid species. These events require viable bacteria that can respond to intracellular cues via the PhoPR sensor kinase system but are independent of the ESX1 system. CONCLUSIONS/SIGNIFICANCE: Cell death caused by virulent M. tuberculosis is distinct from classical apoptosis, pyroptosis or pyronecrosis. Mycobacterial genes essential for cytotoxicity are regulated by the PhoPR two-component system. This atypical death mode provides a mechanism for viable bacilli to exit host macrophages for spreading infection and the eventual transition to extracellular persistence that characterizes advanced pulmonary tuberculosis
    corecore