University of Massachusetts Medical School eScholarship@UMMS

University of Massachusetts Medical School Faculty Publications

2019-10-31

# Phosphorylation on PstP controls cell wall metabolism and antibiotic tolerance in Mycobacterium smegmatis [preprint]

Farah Shamma University of Texas at Arlington

Et al.

# Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/faculty\_pubs

Part of the Amino Acids, Peptides, and Proteins Commons, Bacteria Commons, Bacterial Infections and Mycoses Commons, Biochemical Phenomena, Metabolism, and Nutrition Commons, Cellular and Molecular Physiology Commons, and the Microbiology Commons

# **Repository Citation**

Shamma F, Papavinasasundaram K, Bandekar A, Sassetti CM, Boutte CC. (2019). Phosphorylation on PstP controls cell wall metabolism and antibiotic tolerance in Mycobacterium smegmatis [preprint]. University of Massachusetts Medical School Faculty Publications. https://doi.org/10.1101/825588. Retrieved from https://escholarship.umassmed.edu/faculty\_pubs/1651

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in University of Massachusetts Medical School Faculty Publications by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.

#### 1 Phosphorylation on PstP controls cell wall metabolism and antibiotic tolerance in

- 2 Mycobacterium smegmatis
- 3
- 4 Farah Shamma<sub>1</sub>, Kadamba Papavinasasundaram<sub>2</sub>, Aditya Bandekar<sub>2</sub>, Christopher
- 5 Sassetti<sub>2</sub>, and Cara C. Boutte<sub>1</sub>\*
- 6
- 7 1Department of Biology, University of Texas Arlington, Arlington, Texas
- 8 2Department of Microbiology and Physiological Systems, University of Massachusetts
- 9 Medical School, Worcester, Massachusetts
- 10 \*corresponding author: cara.boutte@uta.edu
- 11

# 12 Abstract

13

14 The mycobacterial cell wall is a dynamic structure that protects *Mycobacterium* 

- 15 *tuberculosis* and its relatives from environmental stresses. Modulation of cell wall
- 16 metabolism under stress is thought to be responsible for decreased cell wall permeability
- 17 and increased tolerance to antibiotics. The signaling pathways that control cell wall
- 18 metabolism under stress, however, are poorly understood. Here, we examine the
- 19 signaling capacity of a cell wall master regulator, the Serine Threonine Phosphatase
- 20 PstP, in the model organism *Mycobacterium smegmatis*. We studied how interference
- 21 with a regulatory phosphorylation site on PstP affects growth, cell wall metabolism and
- antibiotic tolerance. We find that a phospho-mimetic mutation, *pstP*T171E, slows
- 23 growth, misregulates both mycolic acid and peptidoglycan metabolism in different
- 24 conditions, and interferes with antibiotic tolerance. These data suggest that
- 25 phosphorylation on PstP controls its substrate specificity and is important in the
- transition between growth and stasis.
- 27

# 28 Introduction

- 29
- 30 Tuberculosis (TB), an infectious disease caused by the bacterium *Mycobacterium*
- 31 *tuberculosis (Mtb)*, is currently the ninth leading cause of death worldwide (World Health
- 32 Organization 2017). The fact that TB treatment requires at least a six month regimen
- 33 with four antibiotics is partly due to the intrinsic phenotypic antibiotic tolerance of *Mtb*
- 34 (Nguyen 2016; Jarlier and Nikaido 1994). In the host, *Mtb* cells can achieve a dormant,

non-replicating state exhibiting antibiotic tolerance, reduced metabolism and altered cellwall staining (Boshoff and Barry 2005; Seiler et al. 2003). *In vitro* stresses induce cell
wall thickening and altered staining as well (Cunningham and Spreadbury 1998). The
changes in the cell wall and reduced permeability to antibiotics in stressed cells (Sarathy
et al. 2013) suggest that the regulation of the cell wall is a major contributor to antibiotic
tolerance.

41

42 The accepted cell wall core architecture of *Mtb* consists of a single mycolyl-

43 arabinogalactan-peptidoglycan molecule which is composed of three covalently linked 44 layers (Minnikin 1991). A peptidoglycan (PG) layer surrounding the plasma membrane is 45 covalently bound to an arabinogalactan layer. A lipid layer composed of mycolic acids 46 surrounds the arabinogalactan layer, and the inner leaflet of this layer is covalently 47 linked to the arabinogalactan (Kieser and Rubin 2014). The outer leaflet of the mycolic 48 acid layer contains free mycolic acids, trehalose mycolates and other lipids, glycolipids, 49 glycans and proteins (Marrakchi, Lanéelle, and Daffé 2014). The mycolic acid layer is 50 the major contributor to impermeability of the cell wall (Hett and Rubin 2008).

51

52 While much is known about the cell wall structure of *Mtb*, little is known about the regulation of the cell wall during stress or how they contribute to antibiotic tolerance. The 53 signaling pathways regulating the *Mtb* cell wall likely help it survive in the host. 54 55 Reversible protein phosphorylation is a key regulatory mechanism used by bacteria for environmental signal transduction to regulate cell growth (Echenique et al. 2004; Juris et 56 57 al. 2000: Galvov et al. 1993: J. Wang et al. 1998). In Mtb. Serine/Threonine (S/T) phosphorylation is important in in cell growth regulation (Kang 2005; Gee et al. 2012; 58 59 Boutte et al. 2016; Baer et al. 2014). Mtb has 11 Serine/Threonine Protein Kinases (STPKs) (PknA, PknB and PknD-L) and only one S/T protein phosphatase (PstP) (Cole 60 61 et al. 1998; Bach, Wong, and Av-Gay 2009). Among the STPKs, PknA and PknB are essential for *Mtb* growth and phosphorylate substrates involved in cell growth and 62 division (Sassetti, Boyd, and Rubin 2003; Kang 2005; Fernandez et al. 2006; Kusebauch 63 64 et al. 2014; Boutte et al. 2016) Some of these substrates are enzymes whose activity is 65 directly altered by phosphorylation. The enoyl-ACP reductase activity of InhA, a key enzyme involved in mycolic acid biosynthesis in *Mtb*, is inhibited when phosphorylated 66 67 by multiple STPKs (Molle and Kremer 2010; Khan et al. 2010). All the enzymes in the 68 FAS-II system of mycolic acid biosynthesis are regulated by threonine phosphorylation

(Molle et al. 2006; Vilchèze et al. 2014; Slama et al. 2011; Khan et al. 2010; VeyronChurlet and Zanella-Cléon 2010).

71

There are also cell wall regulators that are not enzymes but whose phosphorylation by 72 73 STPKs affect cell shape and growth. For example, the regulator CwIM activates MurA, 74 the first enzyme in PG precursor biosynthesis (Boutte et al. 2016; Typas et al. 2011). 75 when it is phosphorylated by PknB. In the transition to starvation, CwlM is rapidly 76 dephosphorylated in *Msmeg* (Boutte et al. 2016). Misregulation of MurA activity 77 increases sensitivity to antibiotics in early starvation (Boutte et al. 2016), implying that phospho-regulation of CwIM promotes antibiotic tolerance. CwIM may also regulate 78 79 other steps of peptidoglycan synthesis (Turapov et al. 2018). A recent phosphoproteomic study showed that PstP is likely to be the phosphatase of CwIM 80 81 (Iswahyudi et al. 2019) 82 83 PstP, the only S/T phosphatase must have to dephosphorylate substrates 84 phosphorylated by most or all of the 11 STPKs in Mtb (Cole et al. 1998). PstP is essential in *Mtb* and *Msmeg* (DeJesus et al. 2017; Sharma et al. 2016). It is a member of 85 86 the Protein phosphatase 2C (PP2C) subfamily of PPM (metal-dependent protein phosphatase) ser/thr phosphatases (Chopra et al. 2003) which strictly require divalent 87 metal ions for activity (Shi 2009). In addition to the two characteristic metal binding sites 88 of PP2C phosphatases, the PstP<sub>Mtb</sub> catalytic domain has a third Mn<sub>2+</sub> binding site close 89 90 to the flap subdomain adjacent to the active site (Pullen et al. 2004) (Figure 1A). PstP<sub>Mtb</sub> shares structural folds and conserved residues with the human PP2C $\alpha$ , which serves as 91 the representative of the PP2C family (Chopra et al. 2003). PstP*Mtb* has an N-terminal 92 cytoplasmic enzymatic domain of 237 residues which is joined by a 63 amino acids long 93 segment to a transmembrane pass of 18 residues connecting the C-terminal 94 extracellular domain of 191 residues (Chopra et al. 2003). 95 96 97 PP2C phosphatases are involved in responding to environmental signals, regulating metabolic processes, sporulation, cell growth, division and stress response in a diverse 98 99 range of prokaryotes and eukaryotes (Mougous et al. 2007; Irmler and Forchhammer 100 2001; S. Vijay, Mukkayyan, and Ajitkumar 2014; Bradshaw et al. 2017; Lu and Wang 101 2008; K. Vijay et al. 2000).

102

103 In Mtb. PstP can dephosphorylate PknA. PknB. other STPKs (Saiid et al. 2011: Durán et 104 al. 2005; Boitel et al. 2003), KasA, KasB (Sajid et al. 2011; Molle et al. 2006; Durán et al. 2005) and PBPA (Dasgupta et al. 2006). Dephosphorylation of PknB significantly 105 reduces protein kinase activity (Boitel et al. 2003), which likely results in downregulation 106 107 of growth (Betts et al. 2002; Ortega et al. 2014). Many of the other proteins dephosphorylated by PstP are involved in cell wall metabolism; however, the effects of 108 this activity differ. Dephosphorylation of CwIM (Iswahyudi et al. 2019) should decrease 109 110 peptidoglycan metabolism (Boutte et al. 2016). But dephosphorylation of KasA (Molle et 111 al. 2006) and the other FAS-II enzymes (Khan et al. 2010; Slama et al. 2011; Veyron-Churlet and Zanella-Cléon 2010; Molle and Kremer 2010) should upregulate lipid 112 113 metabolism. These phospho-signaling events are likely involved in the transitions between growth and stasis during infection. However, peptidoglycan and lipid 114 115 metabolism should be largely correlated (Dulberger, Rubin, and Boutte 2019), so PstP 116 must be able to minutely toggle its substrate specificity between growth and stasis. For 117 example, we expect that PstP should dephosphorylate KasA but not CwIM during 118 growth, and should switch this specificity in stasis. How does PstP control its substrate specificity? 119

120

PstP<sub>Mtb</sub> is itself phosphorylated in the catalytic domain on Threonine (Thr) residues 137, 121 141, 174 and 290 (Sajid et al. 2011). The corresponding phosphothreonine residues in 122 PstPsmeg are Thr 134, 138 and 171. We hypothesize that phosphorylation of the 123 124 threonine residues of PstP might help determine substrate specificity. Addition of a phosphate group to a protein will change surface charge, which could affect protein 125 confirmation, activity (Bibb and Nestler 2005) or substrate binding (Ardito et al. 2017). 126 127 Mutating T138 to alanine on the PP2C serine threonine phosphatase PphA of Thermosynechococcus elongatus changes its substrate specificity (Su and 128 129 Forchhammer 2012). Thus, changing the surface polarity in this class of enzymes can change substrate specificity. Interestingly, T138 in *T. elongatus* corresponds to T137 In 130 131 PstP<sub>Mtb</sub>, which is phosphorylated (Sajid et al. 2011). Our model is that the phospho-132 threonine sites of PstP are involved in toggling substrate specificity to help regulate 133 growth and cell wall metabolism in changing conditions. 134 135 We report here that phospho-ablative and phospho-mimetic mutations at the phospho-

136 site T171 of PstP<sub>Msmeg</sub> alter growth rate, cell length, cell wall metabolism and antibiotic

- tolerance. Strains of *Msmeg* with *pstP*T171E alleles grow slowly, but are unable to
- 138 properly downregulate peptidoglycan metabolism and upregulate antibiotic tolerance in
- 139 the transition to starvation. We observed that the same mutation has nearly opposite

140 effects on mycolic acid layer metabolism and antibiotic tolerance.

141

#### 142 Materials and Methods

143

#### 144 Bacterial strains and culture conditions

- All *Mycobacterium smegmatis* mc<sub>2</sub>155 ATCC 700084 cultures were started in 7H9
- 146 (Becton, Dickinson, Franklin Lakes, NJ) medium containing 5 g/liter bovine serum
- albumin (BSA), 2 g/liter dextrose, 0.003 g/liter catalase, 0.85 g/liter NaCl, 0.2% glycerol,
- and 0.05% Tween 80 and incubated at 37°C up to log phase. Hartmans-de Bont (HdB)
- 149 minimal medium made as described previously (Hartmans and De Bont 1992) without
- 150 glycerol was used for starvation assays. Serial dilutions of all CFU counts were plated on
- 151 on LB Lennox agar (Fisher BP1427-2).
- 152 *E. coli* Top10, XL1Blue and Dh5α were used for cloning and *E. coli* BL21 Codon Plus
- 153 strains were used for protein expression. Antibiotic concentrations for *M. smegmatis*
- were 25 µg/ml kanamycin. 50 µg/ml hygromycin and 20 µg/ml zeocin. Antibiotic
- 155 concentrations for *E. coli* were 50 µg/ml kanamycin, 25 µg/ml zeocin, 20 µg/ml
- 156 chloramphenicol and 140 µg/ml ampicillin.

#### 157 Strain construction

- 158 Since *pstP* is an essential gene in mycobacteria, a PstP-knockdown strain was created
- in multiple steps; first by creating a merodiploid strain using the *M. tuberculosis pstP*
- 160 gene, and then by deleting the native *M. smegmatis pstP* gene from its native
- 161 chromosomal location. The merodiploid strain was generated by introducing at the L5
- 162 attB integration site, a constitutively expressing *M. tuberculosis pstP* gene cloned on a
- 163 StrR plasmid. The *M. smegmatis pstP* gene (MSMEG\_0033) at the native locus was
- then deleted by RecET-mediated double stranded recombineering approach using a
- 165 1.53 kb loxP-hyg-loxP fragment carrying a 125 bp DNA flanking the *M. smegmatis pstP*
- 166 gene (Murphy, Papavinasasundaram, and Sassetti 2015). The recombineering substrate
- 167 was generated by two sequential overlapping PCR of the loxP-hyg-loxP substrate
- 168 present in the plasmid pKM342. The downstream flanking primer used in the first PCR
- also carried an optimized mycobacterial ribosome binding site in front of the start codon
- of MSMEG\_0032 to facilitate the expression of the genes present downstream of *pstP in*

#### the *M. smegmatis pstP-pknB* operon.

172 Deletion of the *M. smegmstis pstP* gene was confirmed by PCR amplification and sequencing of the 5' and 3' recombinant junctions, and the absence of an internal M. 173 smegmatis wild-type pstP PCR product. The *M. tuberculosis pstP* allele present at the 174 175 L5 site was then swapped with a tet-regulatable *M. tuberculosis pstP* allele (RevTetR-P750-Mtb pstP-DAS tag-L5-Zeo plasmid) (Schnappinger, O'Brien, and Ehrt 2015). The 176 loxP-flanked hyg marker present in the chromosomal locus was then removed by 177 178 expressing Cre from pCre-sacB-Kan, and the Cre plasmid was subsequently cured from 179 this strain by plating on sucrose.

180

181 Different alleles of *pstP* were attained by swapping the zeocin resistance-marked vector

at L5 site with wild-type, phosphoablative (T134A, T138A, T171A) or phosphomimetic

183 (T134E, T138E, T171E) mutant *pstP* alleles under a p766tetON6 promoter for a

184 kanamycin resistance-marked vector, as described (Pashley and Parish 2003). The final

genotypes of the strains are thus mc<sub>2</sub>155  $\Delta pstP$ ::lox L5::pCT94-p766tetON6-*pstP*<sub>Msmeg</sub>

186 wild-type, T134A, T138A, T171A, T134E, T138E or T171E.

187

#### 188 Growth Curve assay

Biological triplicates of each strain were grown in 7H9 media up to log phase. Growth curve experiment was performed in non-treated 96 well plate using plate reader (BioTek Synergy neo2 multi mode reader) in 200ul 7H9 media starting at OD<sub>600</sub>=0.1 for upto 16 hours at 37°C. Data was analyzed using the software Prism (version 7.0d).

193

# 194 Cell staining

For staining cells in their log phase, 100 µl culture in 7H9 was incubated at 37°C with 1ul 195 of 10mM DMN-Tre for 30 minutes and 1µl of 10mM HADA for 15 minutes. Cells were 196 then pelleted and resuspended in phosphate buffered saline (PBS) supplemented with 197 Tween 80 and fixed with 10µl of 16% parafolmaldehyde (PFA) for 10 minutes at room 198 199 temperature. After spinning down, cells were finally resuspended in PBS plus Tween 80. For starvation microscopy, 500µl of culture of each strain was used after incubating for 4 200 201 hours in HdB media without glycerol at 37°C. After pelleting down 500µl culture, 400µl of 202 the supernatant was discarded and the pellets were resuspended in the remaining 100µl 203 media. Cells were then incubated at 37°C with 1µl of 10mM DMN-Tre for a total of 1 204 hour and 3µl of 10mM HADA for 30 minutes. Cells were then pelleted and resuspended

in phosphate buffered saline (PBS) with Tween 80 and fixed as mentioned above. The
 total time of starvation before fixing them was about five and a half hours.

207

#### 208 Microscopy and Image Analysis

209 Log-phase and starved cells fixed with PFA were immobilized on agarose pads. Cells

were then imaged using a Nikon Ti-2 widefield epifluorescence microscope having a

211 Photometrics Prime 95B camera and an objective lens having Plan Apo 100x1.45

- numerical aperture (NA). The green fluorescence images for DMN-Tre staining were
- taken with a 470/40nm excitation filter and a 525/50nm emission filter. Blue fluorescence
- images were taken using 350/50nm excitation filter and 460/50nm emission filter. All
- 215 images were captured using NIS Elements software and analyzed using FIJI and
- 216 MicrobeJ (Ducret, Quardokus, and Brun 2016)
- 217

# 218 Western Blots

- 219 For obtaining protein lysates from log phase cultures, cultures were grown in 7H9 upto
- log phase (OD<sub>600</sub>=0.8) in 10ml 7H9 media, then centrifuged at 5000 rpm for 10 minutes
- at 4°C. Pellets were resuspended in 500µL PBS with 1mM PMSF and lysed
- 222 (MiniBeadBeater-16, Model 607, Biospec). Supernatant from the cell lysate was
- 223 collected by centrifugation at 14000 rpm for 10 minutes at 4°C. Protein samples were
- run on 12% resolving Tris-Glycine gels. Rabbit Strep-tag antibody (1:1000, Abcam,
- ab76949) in TBST buffer with 0.5% milk and goat anti-rabbit IgG (H+L) HRP conjugated
- secondary antibody (1:1000, ThermoFisher Scientific 31460) in TBST were used to
- 227 detect PstP-strep from individual strains on Western blot. For obtaining cell lysates from
- starved cultures, cultures were first grown upto log phase, then starved in 50 ml HdB no
- 229 glycerol starvation media staring at OD=0.5 for one and a half hour. Cell lysates were
- 230 obtained as described above.
- 231

# 232 Antibiotic assays

For antibiotic assays with log phase culture, cells were grown up to the log phase and new 7H9 media with Tween was inoculated at OD600= 0.05. For starvation assays, cells were grown up to the log phase, spun down at 5000 rpm for 10 minutes, washed in HdB starvation (with no glycerol and 0.05% Tween) media. After spinning down at 5000 rpm for 10 minutes at 4°C, pellets were resuspended in the same media and OD at 600nm was taken. HdB starvation (with no glycerol and 0.05% Tween) media was inoculated at

- 239 OD<sub>600</sub>=0.3 and incubated at 37°C for a total of five a half hours. OD<sub>600</sub> was measured
- and 5ml of new starvation media was inoculated at OD<sub>600</sub>=0.05. 8 µg/ml and 45 µg/ml
- 241 Meropenem was used for log-phase and starved cultures respectively. 10 µg/ml and
- 242 90ug/ml Isoniazid was added to log-phase and starved culture respectively. Samples
- from the culture were serially diluted and plated on LB agar before meropenem or
- isoniazid was added and then at several time points after.
- 245 **Protein Purification:** (to be rewritten/edited later again)
- N-terminally his-MBP tagged PknB<sub>Mtb</sub> was expressed using *E. coli* BL21 Codon Plus
- cells at 18°C for 17 hours with 1mM IPTG. Cell pellets were resuspended in 50mM Tris
- pH 7.5, 150mM NaCl, 20mM Imidazole, 1mM DTT and 10% glycerol) and sonicated to
- lyse in presence of lysozyme. Supernatant was run over Ni-column (BioRad Nuvia IMAC
- 5ml). Proteins were eluted in 50mM Tris pH 7.5, 150mM NaCl, 250mM Imidazole, 1mM
- DTT and 10% glycerol and dialyzed. Dialyzed sample was run over Ssize exclusion
- resins (GE Biosciences Sephacryl S200 in HiPrep 26/70 column) to obtain soluble
- proteins in 50mM Tris pH 7.5, 150mM NaCl and 10% glycerol.
- His-SUMO-CwlM<sub>Mtb</sub> was expressed in *E. coli* BL21 Codon Plus cells at 25°C for 6 hours
  with 1.3 mM IPTG. His-PstPc<sub>Mtb</sub> was expressed in *E. coli* BL21 Codon Plus at 25°C for 6
  hours with 1mM IPTG.
- 257
- 258
- 259

# 260 Results

# 261 Phosphosite T171 on PstP<sub>Msmeg</sub> has an impact on growth

- PstP is necessary for cell growth, division and cell wall synthesis in *M. smegmatis* and it
- has been shown that phosphorylation regulates the activity of PstP<sub>Mtb</sub> in vitro (Sharma et
- al. 2016; Iswahyudi et al. 2019; Sajid et al. 2011). We wanted to see if the
- 265 phosphorylations on PstP have a role in regulating cell growth. Threonines (T) T134,
- T138, and T171 in PstP<sub>Msmeg</sub> correspond to the phospho-sites on PstP<sub>Mtb</sub> (Sajid et al.
- 267 2011) (Figure 1A). We constructed an *M. smegmatis* strain with one copy of *pstP* at the
- L5 phage integrase site using recombineering (van Kessel and Hatfull 2008). We then
- 269 exchanged the wild-type allele for either phospho-ablative (T->A) or phospho-mimetic
- 270 (T>E) alleles at each of the three conserved phosphorylation sites (Pashley and Parish
- 271 2003; Cottin, Van Linden, and Riches 1999).
- 272

273 We performed growth curves with several clones of each mutant allele. We found that 274 the biological replicates of the T134A, T134E, T138A and T138E mutant strains had bimodal distributions of doubling times. T134 and T138 map to the flap subdomain of 275 276 PstP<sub>Mtb</sub> (Figure 1A). This subdomain varies greatly in sequence and structure across 277 different PP2C family members and has been shown to be important in regulating substrate binding, specificity and catalytic activity (Pullen et al. 2004; Su and 278 279 Forchhammer 2012; Greenstein et al. 2006; Schlicker et al. 2008). Particularly, T138A 280 and T138E variants of the serine threonine phosphatase tPphA from 281 Thermosynechococcus elongatus showed differences in substrate reactivity (Su and Forchhammer 2012). This suggests that phosphorylations at T134 and T138 could be 282 283 very important in regulating the normal activity of PstP<sub>Msmeg</sub> in the cell. We suspect that

- these mutations impaired growth so severely that suppressor mutations formed in
- several of the biological replicates, giving rise to the inconsistent growth rates.
- 286

287 The *Msmeg* strains with *pstP* T171A and T171E mutations showed consistent and

- reproducible growth rates (Figure 1B). The T171A mutants grew normally, but the T171E
- grew more slowly than the wild-type (Figure 1C). Since T171E mimics constitutive
- 290 phosphorylation, this result suggests that the continuous presence of a phosphate on
- T171 may inhibit cell growth.
- 292

#### 293 Phosphosite T171 of PstP<sub>Msmeg</sub> regulates cell length

294 To assess how phosphorylation on T171 affects cell morphology, we observed the Msmeg pstPT171 mutant and isogenic wild-type cells in log phase using phase 295 microscopy and quantified mean lengths (Figure 2A,B). pstP T171A cells were about 0.5 296 297 µm shorter than the wild-type cells, on average. Because this strain grew at the same rate as wild-type (Figure 1C), we assume that the rate of cell elongation is the same, but 298 299 that septation may be cued at shorter cell lengths. The pstPT171E strain has cell lengths similar to the wild-type (Figure 2A) despite the slower growth (Figure 1C). This 300 301 suggests that phosphorylation on T171 may downregulate elongation and division

302 equally.

303

304 PstP could promote the transition to growth stasis by downregulating the activity of

- PknA, PknB and CwlM (Iswahyudi et al. 2019; Boutte et al. 2016; Sajid et al. 2011; Boitel
- et al. 2003; Chopra et al. 2003). To test if the phosphosite T171 of PstP<sub>Msmeg</sub> affects cell

307 length in the transition to stasis, we transferred the T171 phosphomutants and wild-type 308 strains from log phase to minimal HdB media with Tween80 as the only source of carbon. We aerated the cultures for 5.5 hours before imaging (Figure 2C,D), which leads 309 Msmeg cells to reductively divide (Wu, Gengenbacher, and Dick 2016). The effects of 310 phosphomutations of PstP<sub>Msmeq</sub> on starved cells were the inverse of what we saw in the 311 log phase.  $pstP_{Msmeq}$  T171E cells in starvation were longer than the wild-type and 312 T171A. These data imply that phosphorylation on PstP<sub>Msmeg</sub> T171 either slows reductive 313 division or inhibits the downregulation of cell elongation in the transitions to stasis. These 314 315 data suggest that phosphorylation on T171 of PstP<sub>Msmeg</sub> may reverse the protein's 316 activity or substrate specificity towards cell growth substrates.

317318

319 Phosphosite T171 on PstP<sub>Msmeg</sub> is important in regulating cell wall metabolism

Since *pstP<sub>Msmeg</sub>* T171 seem to play a role in regulating cell length in growth and stasis, 320 321 we hypothesized that it affects cell wall metabolism in different phases. To test this, we 322 used fluorescent dyes that are incorporated into either the peptidoglycan or mycolic acid cell wall layers and which preferentially stain metabolically active cell wall (Kuru et al. 323 324 2012; Baranowski, Rego, and Rubin 2019; Kamariza et al. 2018). We stained phosphomutant and wild-type cells from log. phase and after 5.5 hours of carbon 325 starvation with both the fluorescent D-amino acid HADA (Kuru et al. 2012; Baranowski, 326 Rego, and Rubin 2019) and the fluorescent trehalose DMN-Tre (Kamariza et al. 2018) 327 (Figure 3). 328

329

The peptidoglycan staining was consistent between the strains in log. phase (Figure 3A), 330 331 but in starvation, the *pstP*<sub>Msmeg</sub> T171E mutant stained much more brightly than the other strains. This suggests that phosphorylation on PstP<sub>Msmeg</sub> T171 likely inhibits the 332 downregulation of PG synthesis in the transition to stasis, but that this phospho-site is 333 not important in peptidoglycan metabolism during rapid growth. Phosphorylated CwIM is 334 335 a major activator of peptidoglycan synthesis in log. phase growth and is dephosphorylated upon starvation (Boutte et al. 2016). One possible mechanism to 336 337 explain these data is that PstP is dephosphorylated at T171 upon starvation, and this 338 activates PstP to dephosphorylate CwIM~P, thereby downregulating peptidoglycan 339 precursor synthesis.

340

341 Staining with DMN-Tre, which correlates with assembly of the mycolic acid cell wall 342 layer (Kamariza et al. 2018), shows the inverse pattern. The strains stain similarly in starvation (Figure 3E). In log. phase; however, both mutants show a significant decrease 343 in DMN-Tre signal compared to the wild-type (Figure 3B), though the *pstPMsmeg* T171E 344 mutant has weaker staining that  $pstP_{Msmeg}$ T171A. These data imply that mycolic acid 345 synthesis is regulated by phosphorylation of PstP T171 in log. phase, but not in 346 starvation. Since all the FAS-II enzymes, which make mycolic acids, are inhibited by 347 threonine phosphorylation (Slama et al. 2011; Veyron-Churlet and Zanella-Cléon 2010; 348 349 Khan et al. 2010; Molle and Kremer 2010; Molle et al. 2006), one explanation of these data is that PstP is partially phosphorylated at T171 in log. phase, and the balance of 350 351 PstP in different phospho-states helps maintain a balanced population of active and inactive FAS-II enzymes to properly modulate the flow of lipid intermediates through the 352 353 FAS-II pathway. When PstP is misregulated in either direction by the phospho-354 mutations, lipid synthesis is likely not coordinated properly through the FAS-II pathway. 355 Thus, we hypothesize that the impaired trehalose staining is an indication more of 356 misregulation rather than downregulation of the FAS-II enzymes.

357

These data directly show that the misregulation of phosphorylation on T171 of PstP<sub>Msmeg</sub> affects cell wall metabolism in *M. smegmatis*. Furthermore, they suggest that this phospho-site has a role in determining substrate specificity in order to regulate multiple

361 cell wall metabolism factors in the transition between growth and stasis.

362

#### 363 **Phosphosite T171 of PstP**<sub>Msmeg</sub> affects antibiotic tolerance

Drug tolerance is a feature of dormant, non-replicating mycobacterial cells in stress 364 conditions like oxygen depletion and starvation in PBS (Deb et al. 2009; Betts et al. 365 2002; Zhang 2003; Wayne and Hayes 1996; Sarathy et al. 2013). We hypothesized that 366 if *Msmeg* fails to downregulate peptidoglycan synthesis in starvation, (Figure 3C), then it 367 should be more susceptible to a peptidoglycan targeting drug. We meropenem-treated 368 369 PstP<sub>Msmeg</sub> wild-type, T171A and T171E strains in log phase and after 5.5 hours of starvation, and quantified survival using a CFU assay. We saw that the *pstPMsmeg* 171E 370 371 strain was more tolerant to meropenem in log. phase, but more susceptible in starvation, 372 compared to *pstP<sub>Msmeg</sub>* T171A and wild-type strains (Figure 4B, left panel). The slower 373 growth of the *pstP*<sub>Msmeg</sub> T171E strain in log. phase may account for the greater tolerance

in that condition. The apparent failure of the *pstP<sub>Msmeg</sub>* T171E strain to downregulate PG
 synthesis (Fig. 3) likely makes it more sensitive to peptidoglycan inhibitors in starvation.

Next, we treated our wild-type and *pstPMsmeg* T171 mutant strains with isoniazid, which 377 378 targets InhA in the FAS-II pathway of mycolic acid synthesis (Marrakchi, Lanéelle, and 379 Quémard 2000). In log phase, we see that the *pstPMsmeg* T171E strain is more susceptible to isoniazid than the *pstP*<sub>Msmeg</sub> T171A and the wild-type strains (Figure 4A, 380 381 right panel). Phosphorylation inhibits the activity of InhA (Molle and Kremer 2010; Khan 382 et al. 2010). Our model is that, PstP might be the phosphatase of InhA and the T171E phospho-form may not be able to activate InhA~P by dephosphorylation in log phase. 383 384 Thus the pool of active InhA is decreased in this strain and the cells are sensitized to further InhA inhibition by Isoniazid. Another possibility is that PstP<sub>Msmeg</sub> T171E likely 385 386 cannot properly regulate its activity against the FAS-II enzymes, and the misregulation of the pathway increases sensitivity to pathway inhibitors. We don't see significant 387 388 differences in isoniazid sensitivity between the strains in starvation (Fig. 4B), which 389 corroborates the observation that there is no difference in DMN-Tre staining either in starvation (Fig. 3). Thus, it seems that phosphorylation on T171 affects PstP's activity 390 391 against mycolic acid enzymes in log phase, but not starvation.

392

These results suggest that the phosphosite T171 of PstP<sub>Msmeg</sub> is important in controlling antibiotic susceptibility in *Msmeg*. A myriad of regulatory proteins and enzymes involved in this complex network of cell wall biosynthesis regulation are threonine phosphorylated and thus likely substrates of PstP. It is unknown exactly which of these substrates are being misregulated by the phospho-mutants of *pstP*.

398 399

# 400 **Discussion**

401

In dormant, non-replicating *Mtb* cells, cell wall synthesis is downregulated (Galagan et
al. 2013) and remodeled (Dulberger, Rubin, and Boutte 2019). This regulation of the wall
protects *Mtb* from both the immune system and antibiotics during infection. Our results
suggest that PstP may be important for this regulation.

406

407 PstP is essential in *Mtb* and *Msmeq* (DeJesus et al. 2017: Sharma et al. 2016) and has 408 been shown to regulate cell morphology, division and global S/T phosphorylation in the cell (Chopra et al. 2003; Sajid et al. 2011; Sharma et al. 2016; Iswahyudi et al. 2019). 409 PstP dephosphorylates the essential S/T kinases PknA and PknB as well as assorted 410 cell wall regulatory proteins and enzymes (Sajid et al. 2011; Molle et al. 2006; Molle and 411 412 Kremer 2010; Irmler and Forchhammer 2001). PstP and Pkn A and B seem to have a 413 mutual feedback regulatory loop (Iswahyudi et al. 2019). Previous work has shown that dephosphorylation of PknA and PknB downregulates their activity (Sajid et al. 2011; 414 415 Boitel et al. 2003) which would be expected to broadly downregulate cell growth (Betts et al. 2002; Ortega et al. 2014; Dulberger, Rubin, and Boutte 2019) The phosphorylation of 416 417 PstP has been shown to stimulate its activity against small molecule substrates (Sajid et al. 2011). However, dephosphorylation by PstP is known to both upregulate cell wall 418 419 synthesis through KasA (Molle et al. 2006) and to downregulate cell wall synthesis 420 through CwIM (Boutte et al. 2016) (Fig. 5). Because synthesis of the various cell wall 421 layers must be largely correlated to maintain cell wall integrity, it stands to reason that 422 PstP's regulation must include switches of substrate specificity between growth and 423 stasis.

424

Our data suggest that phosphorylation on T171 of PstP<sub>Msmeg</sub> may be involved in 425 switching substrate specificity between growth and stasis. One model to explain our 426 results is that in log. phase PstP dephosphorylates FAS-II enzymes and has little effect 427 on peptidglycan factors, while in stasis it dephosphorylates the peptidoglycan factor 428 CwIM and is no longer active against FAS-II enzymes. The phosphate on the T171 site 429 could alter substrate specificity by changing the charge on a surface of the phosphatase 430 431 domain that binds substrates, or it might change the geometry of the active site region in order to discriminate against certain substrates (see Fig. 1) (Pullen et al. 2004). 432

433

The antibiotic sensitivity experiments that we performed in *Msmeg* suggest that misregulation of PstP could sensitize mycobacteria to various antibiotics in both growth and stasis. We find it very appealing to consider PstP to be an Achilles' heel of *Mtb*. It is an essential enzyme, so inhibiting it should kill *Mtb* directly. But, it is also a master regulator of antibiotic tolerance, so inhibiting should misregulate the cell wall and increase permeability to other antibiotics.

440

#### 441 Figures

#### 442



444 Figure 1: Phosphosite T171 on PstP affects growth.

T138A

T134E

445

443

ł

F134A

3-21 0

A) Crystal structure of PstP from *M. tuberculosis* (PstP<sub>Mtb</sub>) (Pullen et al. 2004). The 446 threonine (T) sites on PstP<sub>Mtb</sub> phosphorylated by the kinases PknA and PknB (Sajid et al. 447 2011) are highlighted on the structure: red-PstPMtb T137 (the corresponding threonine in 448 PstP<sub>Msmeg</sub> is T134), blue-PstP<sub>Mtb</sub> T141 (the corresponding threonine in PstP<sub>Msmeg</sub> is T138) 449 450 and green- PstP<sub>Mtb</sub> T174 (the corresponding threonine in PstP<sub>Msmeg</sub> is T171).

T171A

T171E

₽ĮĮ

WT

† I

T138E

451

B) Doubling times of biological replicates of WT (L5::pCT94-p766tetON6-pstP<sub>Msmeg</sub>WT), 452 453 phosphoablative mutant strains (L5::pCT94-p766tetON6- pstPMsmeg T134A, T138A and T171A) and phosphomimetic mutant strains (L5::pCT94-p766tetON6-pstPMsmeg T134E, 454 T138E and T171E). Each dot is the mean of doubling times from two to three different 455 456 experiments on different dates. The error bars represent the standard deviation.

457

458 C) Mean doubling times of biological replicates of PstP<sub>Msmeg</sub>WT, T171A and T171E strains 459 (GraphPad Prism 7.0d). The error bars represent the standard deviation. The p-value was 0.0009 by the Student's t-test. 460

- 461
- 462
- 463





488

# 489 Figure 3: Phosphosite T171 of PstP contributes to regulating cell wall metabolism.

490

A) and B) Quantification of mean intensities of HADA and DMN-Tre signals of isogenic
 *pstP* allele strains (WT, T17A and T171E) in log-phase cells. Signals from 100 cells from
 each of three biological replicates were measured using MicrobeJ. P values were
 calculated by unpaired t-test. P value <0.0001.</li>

495

496 C) Representative micrographs of log-phase cells from (A) and (B) stained with the 497 fluorescent dye HADA and DMN-Tre respectively. Corresponding phase images are 498 shown on the bottom panel. The scale bar applies to all images.

499

D) and E) Quantification of mean intensities of HADA and DMN-Tre signals of starved
isogenic *pstP* allele strains (WT, T17A and T171E) in HdB (no glycerol, 0.05% Tween).
Signals from 100 cells from each of three biological replicates were measured using
MicrobeJ. P values were calculated by unpaired t-test. P value <0.0001.</li>

505 F) Representative micrographs of starved cell from (D) stained with the fluorescent dye 506 HADA and (E) stained with the fluorescent dye DMN-Tre. Corresponding phase images 507 are shown on the bottom panel. The scale bar applies to all images.



509

510 Figure 4: Phosphosite T171 of PstP plays a role in antibiotic sensitivity.

511

A) Survival curve of isogenic *pstP* allele strains (WT, T17A and T171E) grown in 7H9 treated with 8ug/ml of Meropenem and 10ug/ml of Isoniazid respectively.

514

B) Survival curve of isogenic *pstP* allele strains starved in HdB (no Glycerol, 0.05% Tween)
for five and a half hours and then treated with 45ug/ml of Meropenem and 90ug/ml of
Isoniazid respectively.

- 518
- 519
- 520
- 521
- 522
- 523

# 524 **References:**

- Ardito, Fatima, Michele Giuliani, Donatella Perrone, Giuseppe Troiano, and Lorenzo Lo Muzio. 2017. "The Crucial Role of Protein Phosphorylation in Cell Signaling and Its
- 527 Use as Targeted Therapy (Review)." *International Journal of Molecular Medicine* 40 528 (2): 271–80. doi:10.3892/ijmm.2017.3036.
- 529 Bach, Horacio, Dennis Wong, and Yossef Av-Gay. 2009. "Mycobacterium

| 530        | tuberculosisPtkA Is a Novel Protein Tyrosine Kinase Whose Substrate Is PtpA."          |
|------------|----------------------------------------------------------------------------------------|
| 531        | <i>Biochemical Journal</i> 420 (2): 155–62. doi:10.1042/BJ20090478.                    |
| 532        | Baer, Christina E, Anthony T lavarone, Tom Alber, and Christopher M Sassetti. 2014.    |
| 533        | "Biochemical and Spatial Coincidence in the Provisional Ser/Thr Protein Kinase         |
| 534        | Interaction Network of Mycobacterium Tuberculosis" The Journal of Biological           |
| 535        | Chemistry 289 (30): 20422–33. doi:10.1074/jbc.M114.559054.                             |
| 536        | Baranowski, Catherine, E Hesper Rego, and Eric J Rubin. 2019. "The Dream of a          |
| 537        | Mycobacterium." <i>Microbiology Spectrum</i> 7 (2): 1–14.                              |
| 538        | doi:10.1128/microbiolspec.GPP3-0008-2018.                                              |
| 539        | Betts, Joanna C, Pauline T Lukey, Linda C Robb, Ruth A McAdam, and Ken Duncan.         |
| 540        | 2002. "Evaluation of a Nutrient Starvation Model of Mycobacterium Tuberculosis         |
| 541        | Persistence by Gene and Protein Expression Profiling" <i>Molecular Microbiology</i> 43 |
| 542        | (3): 717–31.                                                                           |
| 543        | Bibb, James A, and Eric Nestler. 2005. "Basic Neurochemistry: Molecular, Cellular and  |
| 544        | Medical Aspects." In Basic Neurochemistry: Molecular, Cellular and Medical             |
| 545        | Aspects, edited by George Siegel, R Wayne Albers, Scott Brady, and Donald Price,       |
| 546        | 7 ed., 391–93. Elsevier.                                                               |
| 547        | Boitel, Brigitte, Miguel Ortiz-Lombardia, Rosario Durán, Fréderique Pompeo, Stewart T  |
| 548        | Cole, Carlos Cerveñansky, and Pedro M Alzari. 2003. "PknB Kinase Activity Is           |
| 549        | Regulated by Phosphorylation in Two Thr Residues and Dephosphorylation by PstP,        |
| 550        | the Cognate Phospho-Ser/Thr Phosphatase, in Mycobacterium Tuberculosis."               |
| 551        | <i>Molecular Microbiology</i> 49 (6): 1493–1508. doi:10.1046/j.1365-2958.2003.03657.x. |
| 552        | Bosnoff, Helena I M, and Clifton E Barry. 2005. "I uberculosis — Metabolism and        |
| 553        | Respiration in the Absence of Growth." Nature Reviews Microbiology 3 (1): 70–80.       |
| 554        | doi:10.1038/nrmicro1065.                                                               |
| 555        | Boutte, Cara C, Christina E Baer, Kadamba Papavinasasundaram, Weiru Liu, Michael R     |
| 556        | Chase, Xavier Meniche, Sarah M Fortune, et al. 2010. A Cytopiasmic                     |
| 55/<br>559 | Pepiloogiycan Amidase Homologue Controls Mycobacterial Cell Wall Synthesis.            |
| 550        | doi:10.7554/ol.ifo.14500                                                               |
| 559        | Readshow N_V/ML ovdikov_C_M Zimonvi, and P Goudot Elife, 2017, "A Widesproad           |
| 561        | Eamily of Sorino/Throoping Protein Phoenbatases Shares a Common Pogulatory             |
| 562        | Switch with Proteasomal Proteases " Cdn Elifesciences org                              |
| 563        | doi:10 7554/al ifa 26111 001                                                           |
| 564        | Chonra Puneet Bhuminder Singh Ramandeen Singh Reena Vohra Anil Koul Laxman             |
| 565        | S Meena Harshavardhan Koduri et al 2003 "Phosphoprotein Phosphatase of                 |
| 566        | Mycobacterium Tuberculosis Dephosphorylates Serine–Threonine Kinases PknA              |
| 567        | and PknB " Biochemical and Biophysical Research Communications 311 (1): 112–           |
| 568        | 20. doi:10.1016/i bbrc 2003.09.173                                                     |
| 569        | Cole ST R Brosch J Parkhil and T Garnier 1998 "Deciphering the Biology of              |
| 570        | Mycobacterium Tuberculosisfrom the Complete Genome Sequence." July, 1–27.              |
| 571        | Cottin, V. A Van Linden, and D W Riches, 1999, "Phosphorylation of Tumor Necrosis      |
| 572        | Factor Receptor CD120a (P55) by P42(Mapk/Erk2) Induces Changes in Its                  |
| 573        | Subcellular Localization" The Journal of Biological Chemistry 274 (46): 32975–87.      |
| 574        | doi:10.1074/ibc.274.46.32975.                                                          |
| 575        | Cunningham, A.F., and C.L. Spreadbury, 1998. "Mycobacterial Stationary Phase Induced   |
| 576        | by Low Oxygen Tension: Cell Wall Thickening and Localization of the 16-Kilodalton      |
| 577        | Alpha-Crystallin Homolog" Journal of Bacteriology 180 (4): 801-8.                      |
| 578        | Dasgupta, Arunava, Pratik Datta, Manikuntala Kundu, and Joyoti Basu. 2006. "The        |
| 579        | Serine/Threonine Kinase PknB of Mycobacterium Tuberculosis Phosphorylates              |
| 580        | PBPA, a Penicillin-Binding Protein Required for Cell Division" Microbiology            |

| 581 | (Reading, England) 152 (Pt 2): 493–504. doi:10.1099/mic.0.28630-0.                     |
|-----|----------------------------------------------------------------------------------------|
| 582 | Deb, Chirajyoti, Chang-Muk Lee, Vinod S Dubey, Jaiyanth Daniel, Bassam Abomoelak,      |
| 583 | Tatiana D Sirakova, Santosh Pawar, Linda Rogers, and Pappachan E Kolattukudy.          |
| 584 | 2009. "A Novel in Vitro Multiple-Stress Dormancy Model for Mycobacterium               |
| 585 | I uberculosis Generates a Lipid-Loaded, Drug-Tolerant, Dormant Pathogen." Edited       |
| 586 | by Niyaz Ahmed. <i>PLoS ONE</i> 4 (6): e6077. doi:10.1371/journal.pone.0006077.t003.   |
| 587 | DeJesus, Michael A, Elias R Gerrick, Weizhen Xu, Sae Woong Park, Jarukit E Long,       |
| 588 | Cara C Boutte, Eric J Rubin, et al. 2017. "Comprehensive Essentiality Analysis of      |
| 589 | the Mycobacterium tuberculosisGenome via Saturating Transposon Mutagenesis."           |
| 590 | Edited by Christina L Stallings. <i>mBio</i> 8 (1): 1–17. doi:10.1128/mBio.02133-16.   |
| 591 | Ducret, Adrien, Ellen M Quardokus, and Yves V Brun. 2016. "MicrobeJ, a Tool for High   |
| 592 | Throughput Bacterial Cell Detection and Quantitative Analysis." Nature Microbiology    |
| 593 | 1 (7): 671–77. doi:10.1038/nmicrobiol.2016.77.                                         |
| 594 | Dulberger, Charles L, Eric J Rubin, and Cara C Boutte. 2019. "The Mycobacterial Cell   |
| 595 | Envelope — a Moving Target." <i>Nature Publishing Group</i> , October. Springer US, 1– |
| 596 | 13. doi:10.1038/s41579-019-0273-7.                                                     |
| 597 | Durán, Rosario, Andrea Villarino, Marco Bellinzoni, Annemarie Wehenkel, Pablo          |
| 598 | Fernandez, Brigitte Boitel, Stewart T Cole, Pedro M Alzari, and Carlos Cerveñansky.    |
| 599 | 2005. "Conserved Autophosphorylation Pattern in Activation Loops and                   |
| 600 | Juxtamembrane Regions of Mycobacterium Tuberculosis Ser/Thr Protein Kinases."          |
| 601 | Biochemical and Biophysical Research Communications 333 (3): 858–67.                   |
| 602 | doi:10.1016/j.bbrc.2005.05.173.                                                        |
| 603 | Echenique, J, A Kadioglu, S Romao, P W Andrew, and M C Trombe. 2004. "Protein          |
| 604 | Serine/Threonine Kinase StkP Positively Controls Virulence and Competence in           |
| 605 | Streptococcus Pneumoniae." Infection and Immunity 72 (4): 2434–37.                     |
| 606 | doi:10.1128/IAI.72.4.2434-2437.2004.                                                   |
| 607 | Fernandez, P, B Saint-Joanis, N Barilone, M Jackson, B Gicquel, S T Cole, and P M      |
| 608 | Alzari. 2006. "The Ser/Thr Protein Kinase PknB Is Essential for Sustaining             |
| 609 | Mycobacterial Growth." Journal of Bacteriology 188 (22): 7778–84.                      |
| 610 | doi:10.1128/JB.00963-06.                                                               |
| 611 | Galagan, James E, Kyle Minch, Matthew Peterson, Anna Lyubetskaya, Elham Azizi,         |
| 612 | Linsday Sweet, Antonio Gomes, et al. 2013. "The Mycobacterium Tuberculosis             |
| 613 | Regulatory Network and Hypoxia" Nature 499 (7457): 178–83.                             |
| 614 | doi:10.1038/nature12337.                                                               |
| 615 | Galyov, Edouard E, Sebastian Hakansson, Ake Forsberg, and Hans Wolf-Watz. 1993.        |
| 616 | "A Secreted Protein Kinase of Yersinia Pseudotuberculosis Is an Imdispensable          |
| 617 | Virulence Determinant," February, 1–3.                                                 |
| 618 | Gee, Christine L, Kadamba G Papavinasasundaram, Sloane R Blair, Christina E Baer,      |
| 619 | Arnold M Falick, David S King, Jennifer E Griffin, et al. 2012. "A Phosphorylated      |
| 620 | Pseudokinase Complex Controls Cell Wall Synthesis in Mycobacteria" Science             |
| 621 | Signaling 5 (208): ra7–ra7. doi:10.1126/scisignal.2002525.                             |
| 622 | Greenstein, Andrew E, Christoph Grundner, Nathaniel Echols, Laurie M Gay, T Noelle     |
| 623 | Lombana, Carl A Miecskowski, Kristi E Pullen, Pei-Yi Sung, and Tom Alber. 2006.        |
| 624 | "Structure/Function Studies of Ser/Thr and Tyr Protein Phosphorylation in              |
| 625 | <i>Mycobacterium Tuberculosis</i> ." Journal of Molecular Microbiology and             |
| 626 | Biotechnology 9 (3-4): 167–81. doi:10.1159/000089645.                                  |
| 627 | Hartmans, S, and J A M De Bont. 1992. The Genus Mycobacterium— Nonmedical              |
| 628 | . Edited by A Balows, H G Truper, M Dworkin, W Harder, and K H Schleifer. 2nd ed. Vol. |
| 629 | 2. New York, NY: Springer-Verlag New York Inc.                                         |
| 630 | Hett, Erik C, and Eric J Rubin. 2008. "Bacterial Growth and Cell Division: a           |
| 631 | Nycobacterial Perspective Microbiology and Molecular Biology Reviews : MMBR            |

| 632 | 72 (1): 126–56–tableofcontents. doi:10.1128/MMBR.00028-07.                                                                  |
|-----|-----------------------------------------------------------------------------------------------------------------------------|
| 633 | Irmler, A, and K Forchhammer. 2001. "A PP2C-Type Phosphatase Dephosphorylates                                               |
| 634 | the PII Signaling Protein in the Cyanobacterium Synechocystis PCC 6803"                                                     |
| 635 | Proceedings of the National Academy of Sciences 98 (23): 12978–83.                                                          |
| 636 | doi:10.1073/pnas.231254998.                                                                                                 |
| 637 | Iswahyudi, Galina V Mukamolova, Anna A Straatman-Iwanowska, Natalie Allcock, Paul                                           |
| 638 | Ajuh, Obolbek Turapov, and Helen M O'Hare. 2019. "Mycobacterial Phosphatase                                                 |
| 639 | PstP Regulates Global Serine Threonine Phosphorylation and Cell Division"                                                   |
| 640 | Scientific Reports 9 (1): 8337. doi:10.1038/s41598-019-44841-9.                                                             |
| 641 | Jarlier, V, and H Nikaido. 1994. "Mycobacterial Cell Wall: Structure and Role in Natural                                    |
| 642 | Resistance to Antibiotics." 123 (1-2): 11–18.                                                                               |
| 643 | Juris, S J, A E Rudolph, D Huddler, K Orth, and J E Dixon. 2000. "A Distinctive Role for                                    |
| 644 | the Yersinia Protein Kinase: Actin Binding, Kinase Activation, and Cytoskeleton                                             |
| 645 | Disruption" Proceedings of the National Academy of Sciences 97 (17): 9431–36.                                               |
| 646 | doi:10.1073/pnas.170281997.                                                                                                 |
| 647 | Kamariza, Mireille, Peyton Shieh, Christopher S Ealand, Julian S Peters, Brian Chu,                                         |
| 648 | Frances P Rodriguez-Rivera, Mohammed R Babu Sait, et al. 2018. "Rapid Detection                                             |
| 649 | of Mycobacterium Tuberculosis in Sputum with a Solvatochromic Trehalose Probe"                                              |
| 650 | Science Translational Medicine 10 (430). doi:10.1126/scitranslmed.aam6310.                                                  |
| 651 | Kang, C M. 2005. "The Mycobacterium Tuberculosis Serine/Threonine Kinases PknA                                              |
| 652 | and PknB: Substrate Identification and Regulation of Cell Shape." Genes &                                                   |
| 653 | Development 19 (14): 1692–1704. doi:10.1101/gad.1311105.                                                                    |
| 654 | Khan, Shazia, Sathya Narayanan Nagarajan, Amit Parikh, Sharmishtha Samantaray,                                              |
| 655 | Albei Singn, Devanand Kumar, Rajendra P Roy, Apoorva Bhatt, and Vinay Kumar                                                 |
| 656 | Nandicoori. 2010. Phosphorylation of Enoyl-Acyl Carrier Protein Reductase Inna                                              |
| 657 | (48): 27860, 71, doi:10.1074/ibo.M110.142121                                                                                |
| 038 | (40). 57000-71. 001.10.1074/jbC.WI110.145151.<br>Kieser Karen Land Frie I Pubin 2014 "Hew Sisters Crew Apart: Myschootarial |
| 660 | Growth and Division " Nature Publishing Group, July Nature Publishing Group, 1                                              |
| 661 | 13. doi:10.1038/prmicro3209                                                                                                 |
| 662 | Kuru Erkin H Velocity Hughes Pamela I Brown Edward Hall Srinivas Tekkam Feline                                              |
| 663 | Cava Miguel A de Pedro Yves V Brun and Michael S VanNieuwenbze 2012 "In                                                     |
| 664 | Situ Prohing of Newly Synthesized Pentidoglycan in Live Bacteria with Fluorescent                                           |
| 665 | D-Amino Acids " Angewandte Chemie International Edition 51 (50): 12519–23                                                   |
| 666 | doi:10.1002/anie 201206749                                                                                                  |
| 667 | Kusebauch, U. C. Ortega, A Ollodart, R.S. Rogers, D.R. Sherman, R.L. Moritz, and C.                                         |
| 668 | Grundner, 2014. "Mycobacterium Tuberculosis Supports Protein Tyrosine                                                       |
| 669 | Phosphorylation." Proceedings of the National Academy of Sciences 111 (25):                                                 |
| 670 | 9265–70. doi:10.1073/pnas.1323894111.                                                                                       |
| 671 | Lu, Gang, and Yibin Wang, 2008. "Functional Diversity of Mammalian Type 2c Protein                                          |
| 672 | Phosphatase Isoforms: New Tales From an Old Family." <i>Clinical and Experimental</i>                                       |
| 673 | Pharmacology and Physiology 35 (2): 107–12. doi:10.1111/j.1440-                                                             |
| 674 | 1681.2007.04843.x.                                                                                                          |
| 675 | Marrakchi, H, G Lanéelle, and A Quémard. 2000. "InhA, a Target of the Antituberculous                                       |
| 676 | Drug Isoniazid, Is Involved in a Mycobacterial Fatty Acid Elongation System. FAS-                                           |
| 677 | II" Microbiology (Reading, England) 146 ( Pt 2) (2): 289–96. doi:10.1099/00221287-                                          |
| 678 | 146-2-289.                                                                                                                  |
| 679 | Marrakchi, Hedia, Marie-Antoinette Lanéelle, and Mamadou Daffé. 2014. "Mycolic Acids:                                       |
| 680 | Structures, Biosynthesis, and Beyond." Chemistry & Biology 21 (1). Elsevier Ltd: 67-                                        |
| 681 | 85. doi:10.1016/j.chembiol.2013.11.011.                                                                                     |
| 682 | Minnikin, D E. 1991. "Chemical Principles in the Organization of Lipid Components in the                                    |

| 683 | Mycobacterial Cell Envelope" Research in Microbiologoy 142 (4): 423–27.                 |
|-----|-----------------------------------------------------------------------------------------|
| 684 | Molle, Virginie, Alistair K Brown, Gurdyal S Besra, Alain J Cozzone, and Laurent        |
| 685 | Kremer. 2006. "The Condensing Activities of the Mycobacterium tuberculosisType II       |
| 686 | Fatty Acid Synthase Are Differentially Regulated by Phosphorylation." Journal of        |
| 687 | Biological Chemistry 281 (40): 30094–103. doi:10.1074/jbc.M601691200.                   |
| 688 | Molle, Virginie, and Laurent Kremer. 2010. "Division and Cell Envelope Regulation by    |
| 689 | Ser/Thr Phosphorylation: Mycobacteriumshows the Way." Molecular Microbiology 75         |
| 690 | (5): 1064–77. doi:10.1111/j.1365-2958.2009.07041.x.                                     |
| 691 | Mougous, Joseph D. Casev A Gifford, Talia L Ramsdell, and John J Mekalanos, 2007.       |
| 692 | "Threonine Phosphorylation Post-Translationally Regulates Protein Secretion in          |
| 693 | Pseudomonas Aeruginosa." Nature Cell Biology 9 (7): 797–803.                            |
| 694 | doi:10.1038/ncb1605.                                                                    |
| 695 | Murphy, Kenan C, Kadamba Papavinasasundaram, and Christopher M Sassetti, 2015.          |
| 696 | "Mycobacterial Recombineering." In Plant Pattern Recognition Receptors,                 |
| 697 | 1285:177–99. Methods in Molecular Biology. New York, NY: Springer New York.             |
| 698 | doi:10.1007/978-1-4939-2450-9 10.                                                       |
| 699 | Nguyen, Liem. 2016. "Antibiotic Resistance Mechanisms in M. Tuberculosis: an Update."   |
| 700 | Archives of Toxicology 90 (7): 1585–1604. doi:10.1007/s00204-016-1727-6.                |
| 701 | Ortega, Corrie, Reiling Liao, Lindsey N Anderson, Tige Rustad, Anja R Ollodart, Aaron T |
| 702 | Wright, David R Sherman, and Christoph Grundner. 2014. "Mycobacterium                   |
| 703 | Tuberculosis Ser/Thr Protein Kinase B Mediates an Oxygen-Dependent Replication          |
| 704 | Switch." Edited by Matthew K Waldor. PLoS Biology 12 (1): e1001746–11.                  |
| 705 | doi:10.1371/journal.pbio.1001746.                                                       |
| 706 | Pashley, Carey A, and Tanya Parish. 2003. "Efficient Switching of Mycobacteriophage     |
| 707 | L5-Based Integrating Plasmids in Mycobacterium Tuberculosis." FEMS Microbiology         |
| 708 | Letters 229 (2): 211–15. doi:10.1016/S0378-1097(03)00823-1.                             |
| 709 | Pullen, Kristi E, Ho-Leung Ng, Pei-Yi Sung, Matthew C Good, Stephen M Smith, and        |
| 710 | Tom Alber. 2004. "An Alternate Conformation and a Third Metal in PstP/Ppp, the M.       |
| 711 | Tuberculosis PP2C-Family Ser/Thr Protein Phosphatase." Structure 12 (11): 1947–         |
| 712 | 54. doi:10.1016/j.str.2004.09.008.                                                      |
| 713 | Sajid, Andaleeb, Gunjan Arora, Meetu Gupta, Sandeep Upadhyay, Vinay K Nandicoori,       |
| 714 | and Yogendra Singh. 2011. "Phosphorylation of Mycobacterium Tuberculosis                |
| 715 | Ser/Thr Phosphatase by PknA and PknB." Edited by Deepak Kaushal. PLoS ONE 6             |
| 716 | (3): e17871–11. doi:10.1371/journal.pone.0017871.                                       |
| 717 | Sarathy, Jansy, Veronique Dartois, Thomas Dick, and Martin Gengenbacher. 2013.          |
| 718 | "Reduced Drug Uptake in Phenotypically Resistant Nutrient-Starved Nonreplicating        |
| 719 | Mycobacterium Tuberculosis." Antimicrobial Agents and Chemotherapy 57 (4):              |
| 720 | 1648–53. doi:10.1128/AAC.02202-12.                                                      |
| 721 | Sassetti, Christopher M, Dana Boyd, and Eric J Rubin. 2003. "Genes Required for         |
| 722 | Mycobacterial Growth Defined by High Density Mutagenesis," March, 1–8.                  |
| 723 | Schlicker, Christine, Oleksandra Fokina, Nicole Kloft, Tim Grüne, Stefan Becker, George |
| 724 | M Sheldrick, and Karl Forchhammer. 2008. "Structural Analysis of the PP2C               |
| 725 | Phosphatase tPphA From Thermosynechococcus Elongatus: a Flexible Flap                   |
| 726 | Subdomain Controls Access to the Catalytic Site." Journal of Molecular Biology 376      |
| 727 | (2): 570–81. doi:10.1016/j.jmb.2007.11.097.                                             |
| 728 | Schnappinger, Dirk, Kathryn M O'Brien, and Sabine Ehrt. 2015. "Construction of          |
| 729 | Conditional Knockdown Mutants in Mycobacteria." In Plant Pattern Recognition            |
| 730 | Receptors, 1285:151–75. Methods in Molecular Biology. New York, NY: Springer            |
| 731 | New York. doi:10.1007/978-1-4939-2450-9_9.                                              |
| 732 | Seiler, Peter, Timo Ulrichs, Silke Bandermann, Lydia Pradl, Sabine Jörg, Veit Krenn,    |
| 733 | Lars Morawietz, Stefan H E Kaufmann, and Peter Aichele. 2003. "Cell-Wall                |

| 734 | Alterations as an Attribute of Mycobacterium Tuberculosis in Latent Infection" The      |
|-----|-----------------------------------------------------------------------------------------|
| 735 | Journal of Infectious Diseases 188 (9): 1326–31. doi:10.1086/378563.                    |
| 736 | Sharma, Aditya K, Divya Arora, Lalit K Singh, Aakriti Gangwal, Andaleeb Sajid, Virginie |
| 737 | Molle, Yogendra Singh, and Vinay Kumar Nandicoori. 2016. "Serine/Threonine              |
| 738 | Protein Phosphatase PstP of Mycobacterium Tuberculosis Is Necessary for                 |
| 739 | Accurate Cell Division and Survival of Pathogen" Journal of Biological Chemistry        |
| 740 | 291 (46). American Society for Biochemistry and Molecular Biology: 24215–30.            |
| 741 | doi:10.1074/jbc.M116.754531.                                                            |
| 742 | Shi, Yiqong. 2009. "Serine/Threonine Phosphatases: Mechanism Through Structure."        |
| 743 | Cell 139 (3): 468–84. doi:10.1016/j.cell.2009.10.006.                                   |
| 744 | Slama, Nawel, Jade Leiba, Nathalie Eynard, Mamadou Daffé, Laurent Kremer, Annaïk        |
| 745 | Quémard, and Virginie Molle. 2011. "Negative Regulation by Ser/Thr                      |
| 746 | Phosphorylation of HadAB and HadBC Dehydratases From Mycobacterium                      |
| 747 | Tuberculosis Type II Fatty Acid Synthase System." Biochemical and Biophysical           |
| 748 | Research Communications 412 (3). Elsevier Inc.: 401–6.                                  |
| 749 | doi:10.1016/j.bbrc.2011.07.051.                                                         |
| 750 | Su, Jivong, and Karl Forchhammer, 2012, "Determinants for Substrate Specificity of the  |
| 751 | Bacterial PP2C Protein Phosphatase tPphA From Thermosynechococcus                       |
| 752 | Elongatus." FEBS Journal 280 (2): 694–707. doi:10.1111/i.1742-4658.2011.08466.x.        |
| 753 | Turapov, Obolbek, Francesca Forti, Baleegh Kadhim, Daniela Ghisotti, Jad Sassine,       |
| 754 | Anna Straatman-Iwanowska, Andrew R Bottrill, et al. 2018, "Two Faces of CwlM, an        |
| 755 | Essential PknB Substrate, in Mycobacterium Tuberculosis," CellReports 25 (1).           |
| 756 | ElsevierCompany.: 57–67.e5. doi:10.1016/i.celrep.2018.09.004.                           |
| 757 | Typas, Athanasios, Manuel Banzhaf, Carol A Gross, and Waldemar Vollmer, 2011.           |
| 758 | "From the Regulation of Peptidoglycan Synthesis to Bacterial Growth and                 |
| 759 | Morphology," Nature Publishing Group 10 (2), Nature Publishing Group; 123–36.           |
| 760 | doi:10.1038/nrmicro2677.                                                                |
| 761 | van Kessel, Julia C, and Graham F Hatfull, 2008, "Mycobacterial Recombineering."        |
| 762 | Methods in Molecular Biology (Clifton, N.J.) 435: 203–15. doi:10.1007/978-1-59745-      |
| 763 | 232-8 15.                                                                               |
| 764 | Vevron-Churlet, R. and I Zanella-Cléon, 2010, "Phosphorylation of the Mycobacterium     |
| 765 | Tuberculosis B-Ketoacyl-Acyl Carrier Protein Reductase MabA Regulates Mycolic           |
| 766 | Acid Biosynthesis." Journal of Biological                                               |
| 767 | Vijav, K. M S Brody, E Fredlund, and C W Price, 2000, "A PP2C Phosphatase               |
| 768 | Containing a PAS Domain Is Required to Convey Signals of Energy Stress to the           |
| 769 | sigmaB Transcription Factor of Bacillus Subtilis" Molecular Microbiology 35 (1):        |
| 770 | 180–88. doi:10.1046/j.1365-2958.2000.01697.x.                                           |
| 771 | Vijay, Srinivasan, Nagaraja Mukkayyan, and Parthasarathi Ajitkumar. 2014. "Highly       |
| 772 | Deviated Asymmetric Division in Very Low Proportion of Mycobacterial Mid-Log            |
| 773 | Phase Cells." The Open Microbiology Journal 8 (1): 40–50.                               |
| 774 | doi:10.2174/1874285801408010040.                                                        |
| 775 | Vilchèze, Catherine, Kiel Hards, Michael Berney, Gregory M Cook, and Travis Hartman.    |
| 776 | 2014. "Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria."        |
| 777 | Microbiology Spectrum 2 (3). doi:10.1128/microbiolspec.MGM2-0015-2013.                  |
| 778 | Wang, J, C Li, H Yang, A Mushegian, and S Jin. 1998. "A Novel Serine/Threonine          |
| 779 | Protein Kinase Homologue of Pseudomonas Aeruginosa Is Specifically Inducible            |
| 780 | Within the Host Infection Site and Is Required for Full Virulence in Neutropenic        |
| 781 | Mice" Journal of Bacteriology 180 (24): 6764–68.                                        |
| 782 | Wayne, Lawrence G, and Ladonna G Hayes. 1996. "An in Vitro Model for Sequential         |
| 783 | Study of Shiftdown of." Infection and Immunity 64 (6): 2062–69.                         |
| 784 | World Health Organization. 2017. "Global Tuberculosis Report," October, 1–4.            |

- Wu, Mu-Lu, Martin Gengenbacher, and Thomas Dick. 2016. "Mild Nutrient Starvation
   Triggers the Development of a Small-Cell Survival Morphotype in Mycobacteria."
- *Frontiers in Microbiology* 7 (e8614): 100. doi:10.1128/AAC.49.11.4778-4780.2005.
- 788 Zhang, Ying. 2003. "Zhang 2004," December, 1–21.
- 789
- 790
- 791
- 792