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SUMMARY

Entry into host macrophages and evasion of intra-
cellular destruction mechanisms, including phago-
some-lysosome fusion, are critical elements of
Mycobacterium tuberculosis (Mtb) pathogenesis.
To achieve this, the Mtb genome encodes several
proteins that modify host signaling pathways. PtpA,
a low-molecular weight tyrosine phosphatase, is a
secreted Mtb protein of unknown function. The lack
of tyrosine kinases in the Mtb genome suggests
that PtpA may modulate host tyrosine phosphory-
lated protein(s). We report that a genetic deletion of
ptpA attenuates Mtb growth in human macrophages,
and expression of PtpA-neutralizing antibodies
simulated this effect. We identify VPS33B, a regulator
of membrane fusion, as a PtpA substrate. VPS33B
and PtpA colocalize in Mtb-infected human macro-
phages. PtpA secretion combined with active-phos-
phorylated VPS33B inhibited phagosome-lysosome
fusion, a process arrested in Mtb infections. These
results demonstrate that PtpA is essential for Mtb
intracellular persistence and identify a key host
regulatory pathway that is inactivated by Mtb.

INTRODUCTION

Tuberculosis (TB), caused by the facultative intracellular patho-

gen Mycobacterium tuberculosis, remains a leading cause of

death due to infectious disease in the world today and poses

a serious challenge to international public health. Ten million

new cases of TB arise annually, causing about 2 million deaths

each year (Raviglione, 2003).

Entry into host macrophages and evasion of intracellular de-

struction mechanisms are pivotal to M. tuberculosis virulence.

Crosstalk between host macrophages and the infecting bacteria

is essential for bacterial survival in vivo. Host signaling proteins

are modified by mycobacterial infection (Hestvik et al., 2003),

and M. tuberculosis secretes proteins that contributes to the

inhibition of phagosome maturation. For instance, an M. tuber-

culosis lipid phosphatase, SapM, acts by hydrolyzing the host

phosphatidylinositol-3- phosphate (PI3P) (Vergne et al., 2005).

Pathogenic bacteria are reported to secrete low-molecular

weight tyrosine phosphatases during infection (Bach et al.,
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2006; Bliska et al., 1992; Fu and Galan, 1998). M. tuberculosis

PtpA is such a low-molecular weight tyrosine phosphatase (Cow-

ley et al., 2002). The lack of annotated tyrosine kinase genes in

the M. tuberculosis genome sequence database (Cole et al.,

1998) suggests that PtpA may mediate host-pathogen interac-

tions during infection. Here, we report that VPS33B, a host pro-

tein involved in vesicle trafficking, is dephosphorylated by PtpA

leading to a block of phagosome maturation by M. tuberculosis.

RESULTS

Growth of M. tuberculosis DptpA Mutant Is Attenuated
in Human Macrophages
To assess the contribution of PtpA to M. tuberculosis virulence

and infectivity, we created a ptpA knockout strain of M. tubercu-

losis by allelic exchange (Papavinasasundaram et al., 2005)

(Figure 1A and Figure S1 available online). Compared to its

parental strain, H37Rv, the DptpA mutant showed no differences

in its in vitro growth characteristics both in rolling aerobic or

semistatic cultures (Figure 1B). However, competitive coinfec-

tion of THP-1 macrophages with DptpA and its parental strain

demonstrated that ptpA is required for successful long-term

infection (Figure 1C). Although the wild-type and DptpA mutant

showed similar infectivity with similar colony forming units

(CFU) obtained 2 hr postinfection, the DptpA mutant showed

a reduction of more than two logs in intracellular survival over

48 hr (Figure 1C). During independent infection of macrophages

(Figure 1D), the mutant strain was rapidly cleared; after 72 hr, live

bacteria CFUs were reduced by a magnitude of three logs. In

contrast, the parental strain and the complemented DptpA

mutant established stable infections after 24 hr. The growth of

complemented mutants expressing inactive PtpA was also

attenuated but to a lesser degree compared to the DptpA strain.

Survival of M. tuberculosis Is Attenuated
in Macrophages Expressing aPtpA
Single-Chain Antibodies
To identify the location in which PtpA functions, we used the sin-

gle-chain antibody, sc-007, directed against PtpA (Kd = 0.92 mM).

Incubation with sc-007 reduced the catalytic activity of PtpA by

60% as monitored by p-nitrophenyl phosphate cleavage (data

not shown). Thereafter, the gene encoding sc-007 was trans-

fected and stably expressed to produce intracellular antibodies

(intrabodies) inmacrophages; the yield was 150ng intrabodies/106

cells (Figure S2). Expression of sc-007 in the macrophage
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inhibited the survival of M. tuberculosis as early as 24 hr postin-

fection. Reduced survival was not observed in cells expressing

antibodies against an unrelated protein (anti-bovine ubiquitin)

(Figure 1E). As expected, the growth of DptpA in the presence

of sc-007 was similar to the parental strain. M. tuberculosis

growth attenuation provided further evidence that PtpA is

required for mycobacterial growth in vivo. The reduction of

M. tuberculosis survival by inactivating PtpA in the macrophage

cytosol outside the mycobacterial phagosome strengthens our

hypothesis that PtpA functions within host cells.

Figure 1. M. tuberculosis DptpA Construction and Analyses

(A) (I) Map showing the ptpA genomic region and modification introduced

during the mutant construction. (II) Southern hybridization using a-32P-radio-

actively labeled probe hybridized to a 4.5 kb XhoI fragment for H37Rv wild-

type (1) and a 2.1 kb fragment for the DptpA mutant (2) as predicted based

on restriction map analysis.

(B) In vitro growth of H37Rv wild-type and the DptpA mutant strain. The wild-

type and DptpA mutant strain displayed similar growth rate in 7H9 liquid

medium when incubated as rolling cultures. Similar results were observed

for wild-type and the mutant in static cultures. In static growth, shown are

the mean values (±SD) of three independent experiments.

(C) Competitive coinfection of DptpA mutant and its parental strain. Macro-

phages were infected with an opsonized mixture (1:1) of wild-type and mutant

strains at an moi of 1:10 for 2 hr and placed at 37�C and 5% CO2 after washing

away noninternalized bacteria. Macrophages were processed according to

Supplemental Experimental Procedures. Shown are the mean values (±SD)

of three independent experiments.

(D) M. tuberculosis survival in infected macrophages. DptpA+pptpA repre-

sents the mutant complemented with ptpA. Infected macrophages were

processed as described in the Experimental Procedures. Shown are the

mean values (±SD) of three independent experiments.

(E) M. tuberculosis survival in stable-transfected macrophages expressing

intrabodies against PtpA. Stable-transfected macrophages were obtained

as described in the Experimental Procedures. Shown are the mean values

(±SD) of three independent experiments.
Host VPS33B Is a PtpA Substrate
To identify host proteins that interact with PtpA, we used a ‘‘sub-

strate trapping’’ assay, based on methodology used to identify

substrates for the Y. pseudotuberculosis phosphatase YopH in

HeLa cells (Bliska et al., 1992). This mechanism-based approach

utilizes a catalytically defective mutant of PtpA to trap substrate

complexes. PTPs contain a cysteine nucleophile (Cys11 within

the highly conserved sequence C-X5-R) that forms a phospho-

cysteinyl intermediate during catalysis (Barford et al., 1998)

and a conserved aspartate residue (Asp126) that acts as a gen-

eral acid/base to protonate the tyrosine phenolic leaving group

(Madhurantakam et al., 2005) (Supplemental Data). We hypoth-

esized that mutation of the PtpA catalytic aspartic acid to an al-

anine (Asp126Ala) would result in a catalytically defective PtpA

that, like other similar PTP family mutants, would ‘‘trap’’ host

substrate proteins by stabilizing the covalent enzyme-substrate

complexes. To test this approach, we constructed and overex-

pressed the Asp126Ala, Cys11Ala, and Arg17Ala (Supplemental

Data and Figure S3A) mutants as well as wild-type PtpA. As ex-

pected, only the wild-type PtpA retained phosphatase activity

(Figure S3B). After the addition of the Asp126Ala-PtpA protein

to a THP-1 macrophage lysate, a protein migrating at a molecular

weight of about 70 kDa was trapped (Figure 2AI, lane 4). MALDI-

TOF mass spectrometry identified this protein as hVPS33B

(human Vacuolar Protein Sorting 33B). Western analysis of the

trapped proteins confirmed the identification of VPS33B as the

binding partner of Asp126Ala-PtpA (Figure 2AIIb).

PtpA Directly Binds to and Dephosphorylates VPS33B
To ascertain if VPS33B serves as a tyrosine phosphorylated

substrate of PtpA, we overexpressed, purified, and checked

the phosphorylation properties of VPS33B. We found that

VPS33B is a self-phosphorylating kinase. Autophosphorylation

of VPS33B occurred at tyrosine residues, as revealed by

the extent of g32P-ATP incorporation in an in vitro kinase assay

followed by phospho-amino acid analysis (Figure 2B). Moreover,

site-directed mutagenesis of selected tyrosine residues in

VPS33B significantly reduced autophosphorylation activity

(Figure S7 and Figure 2E).

To demonstrate the interaction of PtpA and VPS33B in vitro,

we used three separate approaches: a biochemical assay, pro-

tein-protein interaction analysis, and coimmunoprecipitation.

The biochemical assay revealed that the extent of g32P-ATP

incorporation into VPS33B was significantly reduced when

recombinant active PtpA was included in the reaction mix

(Figure 2C). Furthermore, dephosphorylation of VPS33B by

active PtpA was dose- and time-dependent, while the catalytic-

defective mutants Cys11Ala, Arg17Ala, and Asp126Ala failed to

dephosphorylate VPS33B, confirming that the catalytic site is

essential for the enzymatic activity of PtpA (Figure S5). The direct

interaction of PtpA with VPS33B was confirmed using the ampli-

fied luminescent proximity assay. The activity of low-molecular

weight phosphatases have been reported to be redox sensitive

(Caselli et al., 1998), and two cysteines (C11 and C16) in the ac-

tive site of PtpA protect the catalytic site serving as a ‘‘self-lock’’

when the redox status changes. The Cys11Ala mutant, which

does not form the locked S-S bridge, was used to test the bind-

ing of PtpA to VPS33B. As shown in Figure S6, Cys11Ala PtpA

bound to VPS33B with Kd of 2.1 nM.
Cell Host & Microbe 3, 316–322, May 2008 ª2008 Elsevier Inc. 317
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Figure 2. Identification of PtpA Substrates and Analyses of VPS33B

(A) (I) Substrate trapping using phosphatase-active and -defective PtpA. The

spot in lane 4 marked with a white dashed ellipse corresponds to VPS33B.

The proteins in lanes 2 and 3 are not dephosphorylated by active PtpA. (II)

Western blotting of trapping gel showing VPS33B bound to PtpA. (a) Mem-

brane exposed to rabbit aPtpA antibodies. (b) Same membrane exposed to

sheep aVPS33B after stripping.

(B) VPS33B is autophosphorylated on tyrosine residues as determined by

acidic hydrolysis and separation on TLC. Retention factor: serine (S), 0.40;

threonine (T), 0.48; tyrosine (Y) 0.53; VPS33B, 0.51.

(C) Radiolabeling analysis of in vitro dephosphorylation of autophosphorylated

recombinant VPS33B by active PtpA (upper image). In VPS33B+PtpA, 0.3 mg

of active PtpA was added. Equal loading of VPS33B (lower image) was

revealed by silver staining.

(D) (I) Immunoprecipitation of VPS33B by Asp126Ala-PtpA from macrophages

lysate. Lysate was coimmunoprecipitated with aPtpA antibodies, resolved on

SDS-PAGE, and blotted onto a nitrocellulose membrane. A band matching

VPS33B was observed after incubation of the membrane with sheep aVPS33B

and donkey asheep antibodies. (II) Control blot. The same membrane was in-

cubated with rabbit aPtpA and goat arabbit antibodies after protein stripping.

Black arrow indicates VPS33B. The difference in the pattern migration might

be due to mammalian posttranslational in THP-1 cells versus E.coli which is

the host for recombinant VPS33B.

(E) Autophosphorylation activity of site-directed mutated tyrosine residues in

VPS33B. Autophosphorylation rates of site-directed mutated VPS33Bs were

tested in an in vitro kinase assay. Samples were resolved in a 10% SDS gel

and exposed to a screen for radiolabeled band localization. After gel drying,

the band corresponding to the phosphorylated spots was excised from the

gel, and the radioactive incorporation was measured in a scintillation counter.

Images represent the radioactivity of the dried gel. Double is defined as the

site-directed mutagenesis of Y133E and Y382E, triple includes the same mu-

tated residues as the double mutant + Y511E, while the quadruple includes the

same mutated residues as the triple mutant + Y517E. Results are expressed as

mean ± SD.
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The interaction of PtpA and VPS33B was further demonstrated

in a separate ex vivo experiment. We pulled down VPS33B from

a THP-1 lysate using the PtpA Asp126Ala mutant. The complex

was immunoprecipitated from the lysate using antibodies

against PtpA. Exposure of the immunoblot to aVPS33B anti-

bodies showed a band matching the size of the substrate (Fig-

ure 2DI). Taken together, these findings confirm that human

VPS33B is a genuine substrate for mycobacterial PtpA.

PtpA and VPS33B Colocalize in M. tuberculosis-Infected
Macrophages
If VPS33B is an in vivo substrate of PtpA, then these two proteins

should colocalize in M. tuberculosis-infected macrophages. To

test this prediction, we used antibodies directed against PtpA

and VPS33B to stain THP-1-derived macrophages infected

with live or killed M. tuberculosis (Figure 3A). In these experi-

ments, VPS33B and PtpA staining overlapped in the periphery

of phagosomes. As expected in the case of a secreted protein,

PtpA was detected only in phagosomes containing live, but not

killed, bacilli (Figure 3A). Macrophages infected with DptpA M. tu-

berculosis did not show colocalization of PtpA and VPS33B,

demonstrating the specificity of the aPtpA antibodies (Figure 3A).

Colocalization analyses (Supplemental Data) were statistically

relevant with a Mander’s overlap coefficient (R) of 0.971 for live

bacteria (0.087 for killed) and Pearson’s correlation coefficient

(Rr) of 0.924 (0.045 for killed); see Supplemental Data for details.

PtpA and VPS33B colocalization was confirmed by electron

microscopy. Immunogold labeling of macrophages infected

with M. tuberculosis H37Rv clearly showed that PtpA closely

associated with VPS33B in the macrophage (Figure 3B). An im-

munoblot analysis of the cytosol/membrane fractionation was

performed (Figure 3C). The cytosolic fraction of M. tuberculo-

sis-infected macrophages (Figure 3C) show limited visibility of

PtpA in macrophage cytosol. However, a band corresponding

to PtpA is present in the cytosolic fraction of macrophages in-

fected with a strain expressing PtpA from an extrachromosomal

plasmid. These experiments confirmed that (1) PtpA is secreted

outside of the mycobacterial phagosome and (2) PtpA and

VPS33B colocalize in the macrophage cytosol.

In yeast, the membrane-associated proteins VPS11, VPS16,

VPS18, and VPS33 form a protein complex termed Class C.

This complex has been shown to be involved in SNARE-

mediated membrane fusion (Rieder and Emr, 1997). VPS33B is

recruited from the cytosol and interacts with membrane-associ-

ated Class C subunits (specifically VPS16) to allow the complex

to migrate to the vacuole (Rieder and Emr, 1997). Analysis of

M. tuberculosis-infected macrophages labeled with antibodies

against VPS16 and PtpA clearly demonstrate colocalization of

PtpA and VPS16 (Figure 3D).

Overall, these studies support the evidence that VPS33B inter-

acts specifically with secreted PtpA in vivo and are in accor-

dance with the identification of VPS33B as a specific substrate

PtpA. Furthermore they suggest that mycobacterial PtpA func-

tions with the Class C complex to influence processes in the

phagosome of infected macrophages.

PtpA Inhibits Phagosome-Lysosome Fusion
One of the key mechanisms by which mycobacteria avoid the

microbicidal activity of macrophages is the inhibition of fusion
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between infected phagosomes and lysosomes. In order to inves-

tigate the role of PtpA in blocking phagosome maturation, mac-

rophages were exposed to latex beads non-covalently coated

with PtpA, bovine serum albumin (BSA) or one of two phospha-

tase-defective mutants Cys11Ala, and Asp126Ala. After inges-

tion of coated beads, phagosome maturation was examined by

Figure 3. Colocalization of PtpA VPS33B and VPS16 in Infected

Macrophages

(A) Macrophages were infected with live or killed bacteria and then processed

and immunostained as described in the Supplemental Data. Goat-arabbit cou-

pled to Alexa 488 was used as to detect aPtpA, while donkey-asheep coupled

to Alexa 633 was used against aVPS33B. Bacteria were stained with Alexa

555. White bar is 20 mm.

(B) Electron microscopy of M. tuberculosis H37Rv-infected macrophages.

Magnification, 97003; inserts, 970003. Bar in the insert is 0.2 mm. VPS33B

and PtpA were localized in the macrophage cytosol using 10 nm gold-labeled

PtpA (white arrows) and 18 nm gold-labeled VPS33B (arrowheads). The

bottom insert shows an independent experiment.

(C) Western analysis of PtpA presence in cytosolic (C) or membrane

(M) compartments of infected macrophages. Lanes 1 (C) and 2 (M) WT-

infected macrophages; lanes 3 (C) and 4 (M) DptpA-infected macrophages;

and lanes 5 (C) and 6 (M) DptpA+pptpA-infected macrophages.

(D) Colocalization of VPS16 and PtpA. Macrophages were infected with the

wild-type strain and processed as described in the Supplemental Data.

Goat-arabbit coupled to Alexa 488 was used as to detect aPtpA, while don-

key-asheep coupled to Alexa 633 was used against a VPS16. Bar is 20 mm.
flow cytometry (FACS) (Hmama et al., 2004). The ability of PtpA

to translocate into the cytosol by crossing the phagosome mem-

brane was demonstrated by Western blotting of cytosolic fraction

from macrophages ingesting PtpA-coated beads. Moreover,

electron microscopy clearly showed that PtpA was detached

from the latex beads and crossed the phagosomal membrane

toward the cytosol (Figures S8 and S9). There was a 60%

reduction in phagolysosomal fusion in macrophages containing

PtpA-coated beads (Figure 4A, WT; Figure S10) compared to

phagosomes containing BSA-coated beads. In contrast, mu-

tated forms of PtpA had a marginal effect on phagolysosome

fusion. Furthermore, beads coated with active PtpA and incu-

bated with sc-007 antibody lost their ability to inhibit phagolyso-

some fusion (Figure 4A, WT-007). These results were further

confirmed by fluorescence (Figure 4B) and electron microscopy

(Figure S8) of the PtpA-coated latex beads. These analyses re-

vealed recruitment of VPS33B to the phagosome, but not a

complete colocalization to the lysosome, while BSA-coated latex

beads recruited VPS33B, which allows them to migrate toward

lysosomes (Figure 4B). These data suggest that M. tuberculosis

PtpA inhibits phagosome maturation.

Influence of PtpA in Phagolysosome Fusion in Presence
or Absence of VPS33B
To assess the role of VPS33B in phagosome maturation, we

attenuated the expression of endogenous VPS33B expression

in THP-1 cells using a siRNA-based approach. Macrophages ex-

pressing two independent siRNA against VPS33B sequences

showed a significant reduction in their ability to mediate phago-

some-lysosome fusion, indicating that VPS33B is essential for

this process (Figure S11). No effect was observed in the pattern

of phagosome-lysosome fusion when the control scramble

RNA was used (Figure S11). Furthermore, macrophages with

silenced VPS33B expression failed to distinguish between PtpA-,

Arg17Ala-, or BSA-coated latex beads in a phagosome matura-

tion assay (Figure S11), whereas complementing VPS33B-

silenced cells by providing active recombinant WT-VPS33B

restored the inhibition of phagolysosome fusion only by PtpA-

coated beads (Figure 4C and Figure S12). In contrast, equivalent

amounts of quadruple-tyrosine-mutated VPS33B (Figure 2E)

delivered to the silenced macrophages did not restore the inhibi-

tion of phagolysosome fusion by PtpA-coated beads (Figures 4C

and Figure S12). Together, these results demonstrate a direct role

for phosphorylated VPS33B in PtpA-dependent phagolysosome

fusion.

DISCUSSION

Interference with host signaling is a common theme in bacterial

pathogenesis. For example, the Salmonella and Yersinia phos-

phatases, SptP (Fu and Galan, 1998) and YopH (Bliska et al.,

1992), are secreted into host cells where they interact with

several adhesion proteins. Here, we provide evidence that M.

tuberculosis utilizes a similar strategy in that it secretes the pro-

tein phosphatase PtpA to promote its survival within the host.

The M. tuberculosis DptpA strain was severely attenuated

when invading macrophages but showed no reduction in growth

rate compared to the wild-type in axenic culture. A similar reduc-

tion in survival was observed when macrophages expressing
Cell Host & Microbe 3, 316–322, May 2008 ª2008 Elsevier Inc. 319
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a cytosolic single-chain antibody (sc-007) against active PtpA

were infected with WT M. tuberculosis. Together, these results

demonstrate that PtpA is required to establish stable infections

in macrophages.

Although it has been shown that PtpA is secreted in different

mycobacterial strains both in vitro (Koul et al., 2000) and in

Figure 4. Contribution of PtpA and VPS33B to Inhibition of

Phagolysosome Fusion

Inhibition of phagolysosome fusion by latex beads coated with either active

PtpA or phosphatase-defective PtpA mutants. Phagolysosome fusion was

quantified using FACS on the basis of colocalization of fluorescent FITC-dex-

tran loaded lysosomes and coated beads containing phagosomes.

(A) Percentage of phagosome fusion to lysosome relative to fusion of phago-

somes containing BSA-coated beads. WT-007 represents active PtpA

exposed to the sc007 prior to bead protein coating. C11A and D126A are

catalytic-defective mutants of PtpA. Asterisk represents a statistical mean

difference using ANOVA one-way analysis. p value = 0.0073. Shown are the

mean values (±SD) of three independent experiments.

(B) Colocalization of active PtpA- (WT) or BSA-coated beads and VPS33B in

infected macrophages was investigated using confocal microscopy. Donkey

asheep coupled to Alexa 633 was used as secondary antibody. Bar is 20 mm.

(C) Macrophages depleted of endogenous VPS33B by siRNA (sequence no.

J-7261-09) were complemented by delivering exogenous WT or quadruple tyro-

sine mutant VPS33B using a Profect delivering reagent (Supplemental Data).

Complemented macrophages were labeled with FITC-dextran and infected,

quantified, and presented as described above. Asterisk represents a statistical

mean difference using ANOVA one-way analysis. p value = 0.0001. Shown are

the mean values (±SD) of three independent experiments. Geometrical mean is

the distribution parameter given by the FACS machine and is obtained by mul-

tiplying the ‘‘n’’ individual values of a cluster together and getting the nth root of

this product.
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vivo (Bach et al., 2006), transit of PtpA into the host cytosol

requires passage through the host phagosome membrane. We

have clearly demonstrated that PtpA is able to overcome this

barrier, as it is present in the macrophage cytosol where it in-

teracts with the host cytosolic protein VPS33B. One report

suggests that mycobacterial proteins whose subunit size does

not exceed 70 kDa are able to cross the phagosomal membrane

(Teitelbaum et al., 1999); as PtpA is 18 kDa, this supports our

data.

Usually, microorganisms engulfed by phagocytes are translo-

cated from phagosomes to lysosomes in a process termed

phago-lysosome fusion. This is a tightly regulated process

involving membrane budding, targeting of vesicles with specific

markers, and fusion of distinct compartments of the endocytic

pathway. As macrophages infected with WT-PtpA-coated

beads caused a pronounced inhibition of phago-lysosome

fusion, we conclude that PtpA interferes with this process. This

theory is supported by the identification of VPS33B as the host

substrate of PtpA. VPS33B is a member of the Class C complex

(Banta et al., 1988) ubiquitously expressed in eukaryotic cells

and is essential for vesicle trafficking (Huizing et al., 2001). Muta-

tions in this protein cause ARC syndrome, a human genetic

disorder causing impaired kidney and liver function followed by

early death (Gissen et al., 2004), and the carnation eye-color

mutant in Drosophila (Sevrioukov et al., 1999). The yeast ortholog

of VPS33B, Vps33p, is an ATP-binding protein (Gerhardt et al.,

1998) required for vacuole morphogenesis and linked to traffick-

ing of proteins from the Golgi to vacuoles (Banta et al., 1990).

We demonstrated that PtpA colocalizes in vivo with VPS33B

when macrophages were infected with live, but not killed bacte-

ria, underlining the need for active secretion (Figure 3A). Electron

microscopic analyses of immunolabeled proteins clearly show

colocalization of PtpA with VPS33B in the host cytosol (Fig-

ure 3B). Furthermore, we demonstrated colocalization of PtpA

with VPS16 (Figure 3D), a protein which has been shown to inter-

act with the VPS33B homolog in yeast (Rieder and Emr, 1997).

These results suggest that PtpA is recruited to the Class C

complex of proteins and interferes directly with vesicular traffick-

ing in the infected macrophage.

Macrophages infected with WT-PtpA-coated beads were

impaired in their ability to initiate phagolysosomal fusion in com-

parison with those given beads coated with BSA or catalytic-

defective PtpA. However, siRNA-mediated silencing of VPS33B

rendered macrophages incapable of differentiating between the

two, although both were phagocytosed with equal efficiency

(Figure S11). The loss of VSP33B impairs this process. As

expected, when recombinant WT-VPS33B was exogenously

delivered into silenced macrophages, WT-PtpA-coated beads

regained their ability to arrest phago-lysosome fusion. These

findings demonstrate that VPS33B is required for phagosome

delivery to the lysosome. To validate these observations, we

exchanged predicted phosphorylable tyrosine residues with glu-

tamate by site-directed mutagenesis. As substitution of tyrosine

for glutamate mimics constitutive phosphorylation, we expected

that this quadruple mutant of VPS33B would be constitutively

active, as well as resistant to PtpA activity. Indeed, VPS33B-

silenced macrophages complemented with mutant VPS33B

showed exacerbated phago-lysosome fusion compared to

macrophages expressing WT-VPS33B when infected with
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WT-PtpA-coated beads. This is in accordance with the predi-

cated scenario in which the constitutively active mutant

VSP33B is rendered resistant to PtpA activity and the resulting

impairment of phagolysosomal fusion. Together, these results

provide strong evidence that PtpA impairs phagolysosomal

fusion in Mtb-infected macrophages by desphosphorylation of

VPS33B.

To our knowledge, PtpA is the first M. tuberculosis enzyme

shown to interact directly with an identified host protein sub-

strate. This interaction provides evidence of an M. tuberculosis

protein disrupting macrophage signaling. PtpA joins two other

M. tuberculosis proteins that have been linked to phagosome

maturation arrest, including a protein kinase, PknG (Cowley

et al., 2004; Walburger et al., 2004), with a yet unidentified

substrate, and the lipid phosphatase SapM (Vergne et al.,

2005). Together, these results imply that M. tuberculosis uses

multiple molecular mechanisms in parallel to block phagosome

maturation in macrophages.

EXPERIMENTAL PROCEDURES

Cells and Antibodies

M. tuberculosis strain H37Rv was grown in 7H9 medium supplemented with

0.05% Tween-80 (Fisher) (7H9T) and 10% OADC (Becton Dickinson).

M. smegmatis mc2155 was utilized for protein overexpression and cultured

in 7H9T medium supplemented with 1% glucose and 50 mg/ml hygromycin

(Calbiochem). THP-1 cells were grown in RPMI 1640 (Sigma) supplemented

with 1% L-glutamine, 10 mM HEPES, 100 mg/ml Streptomycin, 100 U/ml

Penicillin (Stem Cell Technologies), 0.1% Fungizone (Invitrogen), and 10%

fetal calf serum (FCS) (Sigma). Cells were incubated at 37�C supplemented

with 5% CO2. Polyclonal antibodies against VPS33B were kindly provided by

Dr. C. MacKintosh (Protein Phosphorylation Unit, University of Dundee, UK).

Polyclonal antibodies against PtpA were used according to published protocols

(Cowley et al., 2002), and secondary antibodies were obtained commercially.

Construction and Isolation of M. tuberculosis ptpA Deletion Mutant

The ptpA deletion mutant was constructed by allelic replacement and was

isolated by a sequential two-step selection protocol as described earlier

(Papavinasasundaram et al., 2005).

Mass Spectrometry Analyses

Resolved proteins were digested and bands from SDS-PAGE were analyzed

by MALDI-TOF (Voyager-DE STR work station, Laboratory of Molecular

Biophysics, University of British Columbia, Canada).

Substrate Trapping and SDS-PAGE

Substrate trapping was carried out by incubation of a THP-1 lysate with either

recombinant wild-type PtpA, Cys11Ala, or Asp126Ala mutants at 4�C over-

night. The mixture was purified using Ni-NTA resin (QIAGEN) and resolved in

SDS-PAGE.

Immunoprecipitation of Immunocomplexes

Recombinant Asp126Ala-PtpA was incubated overnight with a THP-1 lysate

at 4�C and then incubated a further 2 hr with aPtpA polyclonal antibodies.

The immunocomplexes were purified (Prosep-G, Millipore), resolved by 10%

SDS-PAGE, and immunoblotted onto a nitrocellulose membrane. The mem-

brane was blocked with 3% BSA/PBS, incubated with aVPS33B polyclonal

antibodies followed by incubation with secondary antibodies, and developed

using chemiluminescence (Pierce).

Immunofluorescence Microscopy

Bacteria were prepared and labeled with Alexa 555 (Invitrogen) as described

elsewhere (Bach et al., 2006). Macrophages were infected with bacteria at

a multiplicity of infection (moi) of 1:10, fixed with 2.5% p-formaldehyde, and

permeabilized with saponin (Bach et al., 2006). Confocal images were taken
with a Zeiss Confocal Microscope model LSM510 Meta (Bioimaging Facility,

University of British Columbia, BC, Canada). Images were collected using

the filters required for excitation of the respective secondary antibodies (488

and 633 nm) as well as for bacterium visualization (561 nm). Confocal images

were processed with the ImageJ program.

Single-Chain Antibodies

Tomlinson I+J single-chain Fv antibody (scFv) libraries were kindly supplied by

Geneservice, Cambridge, UK. Recombinant active PtpA was utilized as anti-

gen for screening. Selected genes coding for scFv-aPtpA were amplified by

PCR using oligonucleotides designed with XbaI (forward) and HindIII (reverse)

restriction sites. The amplified genes were subsequently cloned into pMAL-2X

(NEB, MA), and amplified again as fused genes to malE (Bach et al., 2001) con-

taining NheI (forward) and HindIII (reverse) restriction sites. malE fused to the

scFv genes were cloned into pDSRed2-N1 (Clontech). scFv-abovine ubiquitin

was provided by Geneservice, Cambridge, UK.

SUPPLEMENTAL DATA

The Supplemental Data include Supplemental Experimental Procedures, 15

supplemental figures, and one supplemental table and can be found with

this article online at http://www.cellhostandmicrobe.com/cgi/content/full/3/

5/316/DC1/.
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