1,862 research outputs found

    Modes of clustered star formation

    Full text link
    The realization that most stars form in clusters, raises the question of whether star/planet formation are influenced by the cluster environment. The stellar density in the most prevalent clusters is the key factor here. Whether dominant modes of clustered star formation exist is a fundamental question. Using near-neighbour searches in young clusters Bressert et al. (2010) claim this not to be the case and conclude that star formation is continuous from isolated to densely clustered. We investigate under which conditions near-neighbour searches can distinguish between different modes of clustered star formation. Near-neighbour searches are performed for model star clusters investigating the influence of the combination of different cluster modes, observational biases, and types of diagnostic and find that the cluster density profile, the relative sample sizes, limitations in observations and the choice of diagnostic method decides whether modelled modes of clustered star formation are detected. For centrally concentrated density distributions spanning a wide density range (King profiles) separate cluster modes are only detectable if the mean density of the individual clusters differs by at least a factor of ~65. Introducing a central cut-off can lead to underestimating the mean density by more than a factor of ten. The environmental effect on star and planet formation is underestimated for half of the population in dense systems. A analysis of a sample of cluster environments involves effects of superposition that suppress characteristic features and promotes erroneous conclusions. While multiple peaks in the distribution of the local surface density imply the existence of different modes, the reverse conclusion is not possible. Equally, a smooth distribution is not a proof of continuous star formation, because such a shape can easily hide modes of clustered star formation (abridged)Comment: 9 pages, 6 figures, accepted by A&

    Heavy Quark Interactions and Quarkonium Binding

    Full text link
    We consider heavy quark interactions in quenched and unquenched lattice QCD. In a region just above the deconfinement point, non-Abelian gluon polarization leads to a strong increase in the binding. Comparing quark-antiquark and quark-quark interaction, the dependence of the binding on the separation distance rr is found to be the same for the colorless singlet QQˉQ\bar Q and the colored anti-triplet QQQQ state. In a potential model description of in-medium J/ΨJ/\Psi behavior, this enhancement of the binding leads to a survival up to temperatures of 1.5 TcT_c or higher; it could also result in J/ΨJ/\Psi flow.Comment: 8 pages, 8 Figures; invited talk at "Strangeness in Quark Matter 2008", Beijing/China, to appear in the Proceeding

    Conjugate gradient solvers on Intel Xeon Phi and NVIDIA GPUs

    Full text link
    Lattice Quantum Chromodynamics simulations typically spend most of the runtime in inversions of the Fermion Matrix. This part is therefore frequently optimized for various HPC architectures. Here we compare the performance of the Intel Xeon Phi to current Kepler-based NVIDIA Tesla GPUs running a conjugate gradient solver. By exposing more parallelism to the accelerator through inverting multiple vectors at the same time, we obtain a performance greater than 300 GFlop/s on both architectures. This more than doubles the performance of the inversions. We also give a short overview of the Knights Corner architecture, discuss some details of the implementation and the effort required to obtain the achieved performance.Comment: 7 pages, proceedings, presented at 'GPU Computing in High Energy Physics', September 10-12, 2014, Pisa, Ital

    Interplay between chiral and axial symmetries in a SU(2) Nambu--Jona-Lasinio Model with the Polyakov loop

    Full text link
    We consider a two flavor Polyakov--Nambu--Jona-Lasinio (PNJL) model where the Lagrangian includes an interaction term that explicitly breaks the UA(1)_A(1) anomaly. At finite temperature, the restoration of chiral and axial symmetries, signaled by the behavior of several observables, is investigated. We compare the effects of two regularizations at finite temperature, one of them, that allows high momentum quarks states, leading to the full recovery of chiral symmetry. From the analysis of the behavior of the topological susceptibility and of the mesonic masses of the axial partners, it is found in the SU(2) model that, unlike the SU(3) results, the recovery of the axial symmetry is not a consequence of the full recovery of the chiral symmetry. Thus, one needs to use an additional idea, by means of a temperature dependence of the anomaly coefficient, that simulates instanton suppression effects.Comment: 21 pages, 5 figures; PRD versio

    Numerical study of the equation of state for two flavor QCD at finite density

    Full text link
    We discuss the equation of state for 2 flavor QCD at non-zero temperature and density. Derivatives of lnZ\ln Z with respect to quark chemical potential μq\mu_q up to fourth order are calculated, enabling estimates of the pressure, quark number density and associated susceptibilities as functions of μq\mu_q via a Taylor series expansion. It is found that the fluctuations in the quark number density increase in the vicinity of the phase transition temperature and the susceptibilities start to develop a pronounced peak as μq\mu_q is increased. This suggests the presence of a critical endpoint in the (T,μq)(T, \mu_q) plane.Comment: 5 pages, 4 figures, Talk at Confinement 200

    String breaking in Lattice QCD

    Full text link
    The separation of a heavy quark and antiquark pair leads to the formation of a tube of flux, or string, which should break in the presence of light quark-antiquark pairs. This expected zero temperature phenomenon has proven elusive in simulations of lattice QCD. We present simulation results that show that the string does break in the confining phase at nonzero temperature.Comment: LATTICE98(hightemp), 3 pages, 4 figures, LaTe

    Effective potential for Polyakov loops from a center symmetric effective theory in three dimensions

    Full text link
    We present lattice simulations of a center symmetric dimensionally reduced effective field theory for SU(2) Yang Mills which employ thermal Wilson lines and three-dimensional magnetic fields as fundamental degrees of freedom. The action is composed of a gauge invariant kinetic term, spatial gauge fields and a potential for the Wilson line which includes a "fuzzy" bag term to generate non-perturbative fluctuations. The effective potential for the Polyakov loop is extracted from the simulations including all modes of the loop as well as for cooled configuration where the hard modes have been averaged out. The former is found to exhibit a non-analytic contribution while the latter can be described by a mean-field like ansatz with quadratic and quartic terms, plus a Vandermonde potential which depends upon the location within the phase diagram.Comment: 10 pages, 22 figures, v2: published version (minor clarifications, update of reference list

    Redescription of Doryphoribius vietnamensis (Iharos, 1969) (Tardigrada) comb. nov. on the basis of the holotype and additional material from China

    Get PDF
    Hypsibius vietnamensis IHAROS, 1969 was described from Huong tich, 60 km south-west of Hanoi in Vietnam. RAMAZZOTTI andMAUCCI (1983) transferred it to the genus Isohypsibius on the basis of drawings of claws. BEASLEY and CLEVELAND (1996) reported Isohypsibius vietnamensis (IHAROS, 1969) from Yunnan Province in China. We have re-examined specimens described by IHAROS (holotype) and those from China and determined that they should be transferred to the genus Doryphoribius due to their bucco-pharyngeal apparatus structure. Many years ago Hypsibius (Isohypsibius) flavus IHAROS 1966 was also transferred to the genus Doryphoribius SCHUSTER and TOFTNER (1982). It may suggest that some other species of genus Isohypsibius should also by transferred to genus Doryphoribius. Genus Doryphoribius differs from Isohypsibius by the presence of the ventral reinforcement bar on the buccal tube

    QCD at non-zero chemical potential and temperature from the lattice

    Full text link
    A study of QCD at non-zero chemical potential, mu, and temperature, T, is performed using the lattice technique. The transition temperature (between the confined and deconfined phases) is determined as a function of mu and is found to be in agreement with other work. In addition the variation of the pressure and energy density with mu is obtained for small positive mu. These results are of particular relevance for heavy-ion collision experiments.Comment: Invited paper presented at the Joint Workshop on Physics at the Japanese Hadron Facility, March 2002, Adelaide. 10 pages, uses ws-procs9x6.cls style file (provided
    corecore