20 research outputs found

    A Three-Dimensional Turbulent Heat Transfer Analysis for Advanced Tubular Rocket Thrust Chambers

    Get PDF
    Heat transfer was analyzed in the throat region of a plug and spool rocket engine for both smooth and corrugated walls. A three-dimensional, Navier-Strokes code was used for the analysis. The turbulence model in the code was modified to handle turbulence suppression in the crevice region of the corrugated wall. Circumferential variations in the wall heat transfer was predicted for the corrugated wall. The overall heat transfer at the throat of the corrugated wall was 34 percent higher than it was for the smooth wall for comparable rocket flow conditions

    Analytical study of nozzle performance for nuclear thermal rockets

    Get PDF
    Nuclear propulsion has been identified as one of the key technologies needed for human exploration of the Moon and Mars. The Nuclear Thermal Rocket (NTR) uses a nuclear reactor to heat hydrogen to a high temperature followed by expansion through a conventional convergent-divergent nozzle. A parametric study of NTR nozzles was performed using the Rocket Engine Design Expert System (REDES) at the NASA Lewis Research Center. The REDES used the JANNAF standard rigorous methodology to determine nozzle performance over a range of chamber temperatures, chamber pressures, thrust levels, and different nozzle configurations. A design condition was set by fixing the propulsion system exit radius at five meters and throat radius was varied to achieve a target thrust level. An adiabatic wall was assumed for the nozzle, and its length was assumed to be 80 percent of a 15 degree cone. The results conclude that although the performance of the NTR, based on infinite reaction rates, looks promising at low chamber pressures, finite rate chemical reactions will cause the actual performance to be considerably lower. Parameters which have a major influence on the delivered specific impulse value include the chamber temperature and the chamber pressures in the high thrust domain. Other parameters, such as 2-D and boundary layer effects, kinetic rates, and number of nozzles, affect the deliverable performance of an NTR nozzle to a lesser degree. For a single nozzle, maximum performance of 930 seconds and 1030 seconds occur at chamber temperatures of 2700 and 3100 K, respectively

    Nuclear thermal rocket nozzle testing and evaluation program

    Get PDF
    Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. The Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulse values are expected to be within + or - 1.17 pct

    Experimental evaluation of heat transfer on a 1030:1 area ratio rocket nozzle

    Get PDF
    A 1030:1 carbon steel, heat-sink nozzle was tested. The test conditions included a nominal chamber pressure of 2413 kN/sq m and a mixture ratio range of 2.78 to 5.49. The propellants were gaseous oxygen and gaseous hydrogen. Outer wall temperature measurements were used to calculate the inner wall temperature and the heat flux and heat rate to the nozzle at specified axial locations. The experimental heat fluxes were compared to those predicted by the Two-Dimensional Kinetics (TDK) computer model analysis program. When laminar boundary layer flow was assumed in the analysis, the predicted values were within 15% of the experimental values for the area ratios of 20 to 975. However, when turbulent boundary layer conditions were assumed, the predicted values were approximately 120% higher than the experimental values. A study was performed to determine if the conditions within the nozzle could sustain a laminar boundary layer. Using the flow properties predicted by TDK, the momentum-thickness Reynolds number was calculated, and the point of transition to turbulent flow was predicted. The predicted transition point was within 0.5 inches of the nozzle throat. Calculations of the acceleration parameter were then made to determine if the flow conditions could produce relaminarization of the boundary layer. It was determined that if the boundary layer flow was inclined to transition to turbulent, the acceleration conditions within the nozzle would tend to suppress turbulence and keep the flow laminar-like

    Comparison of theoretical and experimental thrust performance of a 1030:1 area ratio rocket nozzle at a chamber pressure of 2413 kN/m2 (350 psia)

    Get PDF
    The joint Army. Navy, NASA. Air Force (JANNAF) rocket engine peformnace prediction procedure is based on the use of various reference computer programs. One of the reference programs for nozzle analysis is the Two-Dimensional Kinetics (TDK) Program. The purpose of this report is to calibrate the JANNAF procedure incorporated into the December l984 version of the TDK program for the high-area-ratio rocket engine regime. The calibration was accomplished by modeling the performance of a 1030:1 rocket nozzle tested at NASA Lewis Research Center. A detailed description of the experimental test conditions and TDK input parameters is given. The results show that the computer code predicts delivered vacuum specific impulse to within 0.12 to 1.9 percent of the experimental data. Vacuum thrust coefficient predictions were within + or - 1.3 percent of experimental results. Predictions of wall static pressure were within approximately + or - 5 percent of the measured values. An experimental value for inviscid thrust was obtained for the nozzle extension between area ratios of 427.5 and 1030 by using an integration of the measured wall static pressures. Subtracting the measured thrust gain produced by the nozzle between area ratios of 427.5 and 1030 from the inviscid thrust gain yielded experimental drag decrements of 10.85 and 27.00 N (2.44 and 6.07 lb) for mixture ratios of 3.04 and 4.29, respectively. These values correspond to 0.45 and 1.11 percent of the total vacuum thrust. At a mixture ratio of 4.29, the TDK predicted drag decrement was 16.59 N (3.73 lb), or 0.71 percent of the predicted total vacuum thrust

    Pseudorandom Selective Excitation in NMR

    Full text link
    In this work, average Hamiltonian theory is used to study selective excitation in a spin-1/2 system evolving under a series of small flip-angle θ−\theta-pulses (θ≪1)(\theta\ll 1) that are applied either periodically [which corresponds to the DANTE pulse sequence] or aperiodically. First, an average Hamiltonian description of the DANTE pulse sequence is developed; such a description is determined to be valid either at or very far from the DANTE resonance frequencies, which are simply integer multiples of the inverse of the interpulse delay. For aperiodic excitation schemes where the interpulse delays are chosen pseudorandomly, a single resonance can be selectively excited if the θ\theta-pulses' phases are modulated in concert with the time delays. Such a selective pulse is termed a pseudorandom-DANTE or p-DANTE sequence, and the conditions in which an average Hamiltonian description of p-DANTE is found to be similar to that found for the DANTE sequence. It is also shown that averaging over different p-DANTE sequences that are selective for the same resonance can help reduce excitations at frequencies away from the resonance frequency, thereby improving the apparent selectivity of the p-DANTE sequences. Finally, experimental demonstrations of p-DANTE sequences and comparisons with theory are presented.Comment: 23 pages, 8 figure

    Coupled Heat Transfer Analysis in Regeneratively Cooled Thrust Chambers

    Get PDF
    A computational procedure able to describe the coupled hot-gas/wall/coolant environment that occurs in most liquid rocket engines and to provide a quick and reliable prediction of thrust-chamber wall temperature and heat flux as well as coolant-flow characteristics, like pressure drop and temperature gain in the regenerative circuit is presented and demonstrated. The coupled analysis is performed by means of an accurate CFD solver of the Reynolds-Averaged Navier-Stokes equations for the hot-gas flow and a simplified quasi-2D approach, which widely relies on semi-empirical relations, to study the problem of coolant flow and wall structure heat transfer in the cooling channels. Coupled computations of the Space Shuttle Main Engine Main Combustion Chamber are performed and compared with available literature data. Results show a reasonable agreement in terms of coolant pressure drop and temperature gain with nominal data, whereas the computed wall temperature peak is quite closer to hot-firing data than to the nominal value. © 2012 by B. Betti, M. Pizzarelli, F. Nasuti

    Calculation of propulsive nozzle flowfields in multidiffusing chemically reacting environments

    Get PDF
    An advanced engineering model has been developed to aid in the analysis and design of hydrogen/oxygen chemical rocket engines. The complete multispecies, chemically reacting and multidiffusing Navier-Stokes equations are modelled, including the Soret thermal diffusion and the Dufour energy transfer terms. In addition to the spectrum of multispecies aspects developed, the model developed in this study is also conservative in axisymmetric flow for both inviscid and viscous flow environments and the boundary conditions employ a viscous, chemically reacting, reference plane characteristics method. Demonstration cases are presented for a 1030:1 area ratio nozzle, a 25 lbf film cooled nozzle, and a transpiration cooled plug and spool rocket engine. The results indicate that the thrust coefficient predictions of the 1030:1 and the 25 lbf film cooled nozzle are within 0.2 to 0.5%, respectively, of experimental measurements when all of the chemical reaction and diffusion terms are considered. Further, the model\u27s predictions agree very well with the heat transfer measurements made in all of the nozzle test cases. The Soret thermal diffusion term is demonstrated to have a significant effect on the predicted mass fraction of hydrogen along the wall of the nozzle in both the laminar flow 1030:1 nozzle and the turbulent flow plug and spool nozzle analysis cases performed. Further, the Soret term was shown to represent an important fraction of the diffusion fluxes occurring in a transpiration cooled rocket engine
    corecore