18 research outputs found
Anterior chamber depth in mice is controlled by several quantitative trait loci
Anterior chamber depth (ACD) is a quantitative trait associated with primary angle closure glaucoma (PACG). Although ACD is highly heritable, known genetic variations explain a small fraction of the phenotypic variability. The purpose of this study was to identify additional ACD-influencing loci using strains of mice. Cohorts of 86 N2 and 111 F2 mice were generated from crosses between recombinant inbred BXD24/TyJ and wild-derived CAST/EiJ mice. Using anterior chamber optical coherence tomography, mice were phenotyped at 10–12 weeks of age, genotyped based on 93 genome-wide SNPs, and subjected to quantitative trait locus (QTL) analysis. In an analysis of ACD among all mice, six loci passed the significance threshold of p = 0.05 and persisted after multiple regression analysis. These were on chromosomes 6, 7, 11, 12, 15 and 17 (named Acdq6, Acdq7, Acdq11, Acdq12, Acdq15, and Acdq17, respectively). Our findings demonstrate a quantitative multi-genic pattern of ACD inheritance in mice and identify six previously unrecognized ACD-influencing loci. We have taken a unique approach to studying the anterior chamber depth phenotype by using mice as genetic tool to examine this continuously distributed trait
Whole-exome sequencing prioritizes candidate genes for hereditary cataract in the Emory mouse mutant
The Emory cataract (Em) mouse mutant has long been proposed as an animal model for age-related or senile cataract in humans-a leading cause of visual impairment. However, the genetic defect(s) underlying the autosomal dominant Em phenotype remains elusive. Here, we confirmed development of the cataract phenotype in commercially available Em/J mice [but not ancestral Carworth Farms White (CFW) mice] at 6-8 months of age and undertook whole-exome sequencing of candidate genes for Em. Analysis of coding and splice-site variants did not identify any disease-causing/associated mutations in over 450 genes known to underlie inherited and age-related forms of cataract and other lens disorders in humans and mice, including genes for lens crystallins, membrane/cytoskeleton proteins, DNA/RNA-binding proteins, and those associated with syndromic/systemic forms of cataract. However, we identified three cataract/lens-associated genes each with one novel homozygous variant including predicted missense substitutions in Prx (p.R167C) and Adamts10 (p.P761L) and a disruptive in-frame deletion variant (predicted missense) in Abhd12 (p.L30_A32delinsS) that were absent in CFW and over 35 other mouse strains. In silico analysis predicted that the missense substitutions in Prx and Adamts10 were borderline neutral/damaging and neutral, respectively, at the protein function level, whereas, that in Abhd12 was functionally damaging. Both the human counterparts of Adamts10 and Abhd12 are clinically associated with syndromic forms of cataract known as Weil-Marchesani syndrome 1 and polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract syndrome, respectively. Overall, while we cannot exclude Prx and Adamts10, our data suggest that Abhd12 is a promising candidate gene for cataract in the Em/J mouse
Anterior chamber depth in mice is controlled by several quantitative trait loci.
Anterior chamber depth (ACD) is a quantitative trait associated with primary angle closure glaucoma (PACG). Although ACD is highly heritable, known genetic variations explain a small fraction of the phenotypic variability. The purpose of this study was to identify additional ACD-influencing loci using strains of mice. Cohorts of 86 N2 and 111 F2 mice were generated from crosses between recombinant inbred BXD24/TyJ and wild-derived CAST/EiJ mice. Using anterior chamber optical coherence tomography, mice were phenotyped at 10-12 weeks of age, genotyped based on 93 genome-wide SNPs, and subjected to quantitative trait locus (QTL) analysis. In an analysis of ACD among all mice, six loci passed the significance threshold of p = 0.05 and persisted after multiple regression analysis. These were on chromosomes 6, 7, 11, 12, 15 and 17 (named Acdq6, Acdq7, Acdq11, Acdq12, Acdq15, and Acdq17, respectively). Our findings demonstrate a quantitative multi-genic pattern of ACD inheritance in mice and identify six previously unrecognized ACD-influencing loci. We have taken a unique approach to studying the anterior chamber depth phenotype by using mice as genetic tool to examine this continuously distributed trait
Ketamine/Xylazine-Induced Corneal Damage in Mice.
We have observed that the commonly used ketamine/xylazine anesthesia mix can induce a focally severe and permanent corneal opacity. The purpose of this study was to establish the clinical and histological features of this deleterious side effect, its sensitivity with respect to age and anesthesia protocol, and approaches for avoiding it.Young C57BL/6J, C57BLKS/J, and SJL/J mice were treated with permutations of anesthesia protocols and compared using slit-lamp exams, optical coherence tomography, histologic analyses, and telemetric measurements of body temperature.Ketamine/xylazine induces corneal damage in mice with a variable frequency. Among 12 experimental cohorts, corneal damage associated with ketamine/xylazine was observed in 9 of them. Despite various treatments to avoid corneal dehydration during anesthesia, the frequency of corneas experiencing damage among responding cohorts was 42% (26% inclusive of all cohorts), which is significantly greater than the natural prevalence (5%). The damage was consistent with band keratopathy. It appeared as a white or gray horizontal band located proximal to the pupil and was positive for subepithelial calcium deposition with von Kossa stain.The sum of our clinical and histological observations is consistent with ketamine/xylazine-induced band keratopathy in mice. This finding is relevant for mouse studies involving the eye and/or vision-dependent behavioral assays, which would both be prone to artifact without appreciation of the damage caused by ketamine/xylazine anesthesia. Use of yohimbine is suggested as a practical means of avoiding this complication
Calcium deposition of damaged corneas.
<p>Paraffin-embedded sections were stained with von Kossa. Calcium deposition is indicated by the brown staining at the interface of the epithelial and stromal layers. Scale bar, 20 μm.</p
Gross morphological changes in four-week-old C57BL/6J corneas after exposure to ketamine/xylazine.
<p>Optical coherence tomography (OCT) of the anterior segment (<b>A-C</b>) and slit-lamp images (<b>D-F</b>) of mice injected with ketamine/xylazine show a range of mild (<i>middle column</i>) to severe (<i>right column</i>) corneal damage. In the OCT images, note the presence of corneal opacities between the stromal and epithelial layers. Naïve C57BL/6J mice (no prior injection with ketamine/xylazine; <i>left column</i>) have healthy, clear corneas and are free of opacity.</p
Body temperature loss during ketamine/xylazine anesthesia of 3-week-old (<i>filled circles</i>) versus 3-month-old (<i>open squares</i>) C57BLKS/J mice.
<p>Immediately upon anesthesia, mice were placed on the OCT platform for 2.5 minutes and then given indirect heat for the remainder of the experiment. There is no significant difference (<i>P</i> > 0.05 at all time points, unpaired <i>t</i>-tests) in body temperature loss between young (small) and adult (large) mice (<i>n</i> = 3 mice per group). Error bars are standard deviation.</p