239 research outputs found

    Local mechanisms for loud sound-enhanced aminoglycoside entry into outer hair cells.

    Get PDF
    Loud sound exposure exacerbates aminoglycoside ototoxicity, increasing the risk of permanent hearing loss and degrading the quality of life in affected individuals. We previously reported that loud sound exposure induces temporary threshold shifts (TTS) and enhances uptake of aminoglycosides, like gentamicin, by cochlear outer hair cells (OHCs). Here, we explore mechanisms by which loud sound exposure and TTS could increase aminoglycoside uptake by OHCs that may underlie this form of ototoxic synergy. Mice were exposed to loud sound levels to induce TTS, and received fluorescently-tagged gentamicin (GTTR) for 30 min prior to fixation. The degree of TTS was assessed by comparing auditory brainstem responses (ABRs) before and after loud sound exposure. The number of tip links, which gate the GTTR-permeant mechanoelectrical transducer (MET) channels, was determined in OHC bundles, with or without exposure to loud sound, using scanning electron microscopy. We found wide-band noise (WBN) levels that induce TTS also enhance OHC uptake of GTTR compared to OHCs in control cochleae. In cochlear regions with TTS, the increase in OHC uptake of GTTR was significantly greater than in adjacent pillar cells. In control mice, we identified stereociliary tip links at ~50% of potential positions in OHC bundles. However, the number of OHC tip links was significantly reduced in mice that received WBN at levels capable of inducing TTS. These data suggest that GTTR uptake by OHCs during TTS occurs by increased permeation of surviving, mechanically-gated MET channels, and/or non-MET aminoglycoside-permeant channels activated following loud sound exposure. Loss of tip links would hyperpolarize hair cells and potentially increase drug uptake via aminoglycoside-permeant channels expressed by hair cells. The effect of TTS on aminoglycoside-permeant channel kinetics will shed new light on the mechanisms of loud sound-enhanced aminoglycoside uptake, and consequently on ototoxic synergy

    The Emerging Role of Pericyte-Derived Extracellular Vesicles in Vascular and Neurological Health

    Full text link
    Pericytes (PCs), as a central component of the neurovascular unit, contribute to the regenerative potential of the central nervous system (CNS) and peripheral nervous system (PNS) by virtue of their role in blood flow regulation, angiogenesis, maintenance of the BBB, neurogenesis, and neuroprotection. Emerging evidence indicates that PCs also have a role in mediating cell-to-cell communication through the secretion of extracellular vesicles (EVs). Extracellular vesicles are cell-derived, micro- to nano-sized vesicles that transport cell constituents such as proteins, nucleic acids, and lipids from a parent originating cell to a recipient cell. PC-derived EVs (PC-EVs) play a crucial homeostatic role in neurovascular disease, as they promote angiogenesis, maintain the integrity of the blood-tissue barrier, and provide neuroprotection. The cargo carried by PC-EVs includes growth factors such as endothelial growth factor (VEGF), connecting tissue growth factors (CTGFs), fibroblast growth factors, angiopoietin 1, and neurotrophic growth factors such as brain-derived neurotrophic growth factor (BDNF), neuron growth factor (NGF), and glial-derived neurotrophic factor (GDNF), as well as cytokines such as interleukin (IL)-6, IL-8, IL-10, and MCP-1. The PC-EVs also carry miRNA and circular RNA linked to neurovascular health and the progression of several vascular and neuronal diseases. Therapeutic strategies employing PC-EVs have potential in the treatment of vascular and neurodegenerative diseases. This review discusses current research on the characteristic features of EVs secreted by PCs and their role in neuronal and vascular health and disease.</jats:p

    Risk Aversion and Incentive Effects

    Full text link

    Two heads are less bubbly than one: Team decision-making in an experimental asset market

    Get PDF
    In the world of mutual funds management, responsibility for investment decisions is increasingly entrusted to small teams instead of individuals. Yet the effect of team decision-making in a market environment has never been studied in a controlled experiment. In this paper, we investigate the effect of team decision-making in an asset market experiment that has long been known to reliably generate price bubbles and crashes in markets populated by individuals. We find that this tendency is substantially reduced when each decision-making unit is instead a team of two. This holds across a broad spectrum of measures of the severity of mispricing, both under a continuous double-auction institution and in a call market. The result is not driven by reduced turnover due to time required for deliberation by teams, and continues to hold even when subjects are experienced. Our result also holds not only when our teams treatments are compared to the ‘narrow’ baseline provided by the corresponding individuals treatments, but also when compared more broadly to the results of the large body of previous research on markets of this kind

    Paradoxes and Mechanisms for Choice under Risk

    Get PDF
    Experiments on choice under risk typically involve multiple decisions by individual subjects. The choice of mechanism for selecting decision(s) for payoff is an essential design feature unless subjects isolate each one of the multiple decisions. We report treatments with different payoff mechanisms but the same decision tasks. The data show large differences across mechanisms in subjects’ revealed risk preferences, a clear violation of isolation. We illustrate the importance of these mechanism effects by identifying their implications for classical tests of theories of decision under risk. We discuss theoretical properties of commonly used mechanisms, and new mechanisms introduced herein, in order to clarify which mechanisms are theoretically incentive compatible for which theories. We identify behavioral properties of some mechanisms that can introduce bias in elicited risk preferences – from cross-task contamination – even when the mechanism used is theoretically incentive compatible. We explain that selection of a payoff mechanism is an important component of experimental design in many topic areas including social preferences, public goods, bargaining, and choice under uncertainty and ambiguity as well as experiments on decisions under risk

    Taxation and market power

    Get PDF
    "We analyze the incidence and welfare effects of unit sales taxes in experimental monopoly and Bertrand markets. We find, in line with economic theory, that firms with no market power are able to shift a high share of a tax burden on to consumers, independent of whether buyers are automated or human players. In monopoly markets, a monopolist bears a large share of the burden of a tax increase. With human buyers, however, this share is smaller than with automated buyers as the presence of human buyers constrains the pricing behavior of a monopolist." (author's abstract)"Dieser Artikel untersucht Inzidenz- und Wohlfahrtseffekte einer Mengensteuer in experimentellen Monopol- und Bertrand-Märkten. Im Einklang mit der ökonomischen Theorie sind Firmen ohne Marktmacht in der Lage, einen großen Anteil der Last einer Steuererhöhung an die Konsumenten weiterzugeben. Dies gilt unabhängig davon, ob die Käufer simuliert sind oder die Kaufentscheidungen durch reale Käufer getroffen werden. In Monopolmärkten trägt der Monopolist einen großen Anteil der Last einer Steuererhöhung. Werden die Kaufentscheidungen durch reale Käufer getroffen, ist dieser Anteil jedoch kleiner als mit simulierten Käufern, da reale Käufer im Experiment das Preissetzungsverhalten des Monopolisten einschränken." (Autorenreferat
    corecore