101 research outputs found

    Dysfunctional stem and progenitor cells impair fracture healing with age

    Get PDF
    Successful fracture healing requires the simultaneous regeneration of both the bone and vasculature; mesenchymal stem cells (MSCs) are directed to replace the bone tissue, while endothelial progenitor cells (EPCs) form the new vasculature that supplies blood to the fracture site. In the elderly, the healing process is slowed, partly due to decreased regenerative function of these stem and progenitor cells. MSCs from older individuals are impaired with regard to cell number, proliferative capacity, ability to migrate, and osteochondrogenic differentiation potential. The proliferation, migration and function of EPCs are also compromised with advanced age. Although the reasons for cellular dysfunction with age are complex and multidimensional, reduced expression of growth factors, accumulation of oxidative damage from reactive oxygen species, and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at the cellular level of both MSCs and EPCs. Because of these geriatric-specific issues, effective treatment for fracture repair may require new therapeutic techniques to restore cellular function. Some suggested directions for potential treatments include cellular therapies, pharmacological agents, treatments targeting age-related molecular mechanisms, and physical therapeutics. Advanced age is the primary risk factor for a fracture, due to the low bone mass and inferior bone quality associated with aging; a better understanding of the dysfunctional behavior of the aging cell will provide a foundation for new treatments to decrease healing time and reduce the development of complications during the extended recovery from fracture healing in the elderly

    GATA-1 deficiency rescues trabecular but not cortical bone in OPG deficient mice

    Get PDF
    GATA-1(low/low) mice have an increase in megakaryocytes (MKs) and trabecular bone. The latter is thought to result from MKs directly stimulating osteoblastic bone formation while simultaneously inhibiting osteoclastogenesis. Osteoprotegerin (OPG) is known to inhibit osteoclastogenesis and OPG(-/-) mice have reduced trabecular and cortical bone due to increased osteoclastogenesis. Interestingly, GATA-1(low/low) mice have increased OPG levels. Here, we sought to determine whether GATA-1 knockdown in OPG(-/-) mice could rescue the observed osteoporotic bone phenotype. GATA-1(low/low) mice were bred with OPG(-/-) mice and bone phenotype assessed. GATA-1(low/low) × OPG(-/-) mice have increased cortical bone porosity, similar to OPG(-/-) mice. Both OPG(-/-) and GATA-1(low/low) × OPG(-/-) mice, were found to have increased osteoclasts localized to cortical bone, possibly producing the observed elevated porosity. Biomechanical assessment indicates that OPG(-/-) and GATA-1(low/low) × OPG(-/-) femurs are weaker and less stiff than C57BL/6 or GATA-1(low/low) femurs. Notably, GATA-1(low/low) × OPG(-/-) mice had trabecular bone parameters that were not different from C57BL/6 values, suggesting that GATA-1 deficiency can partially rescue the trabecular bone loss observed with OPG deficiency. The fact that GATA-1 deficiency appears to be able to partially rescue the trabecular, but not the cortical bone phenotype suggests that MKs can locally enhance trabecular bone volume, but that MK secreted factors cannot access cortical bone sufficiently to inhibit osteoclastogenesis or that OPG itself is required to inhibit osteoclastogenesis in cortical bone

    Megakaryocytes: Regulators of Bone Mass and Hematopoiesis

    Get PDF
    poster abstractEmerging evidence demonstrates that megakaryocytes (MK) play a key role in regulating skeletal homeostasis and hematopoiesis. Recent reports show that MK reside in close proximity to hematopoietic stem cells (HSC). Genetic depletion of MK resulted in mitotic activation of HSC suggesting that MK maintain HSC quiescence. Other studies demonstrated that following irradiation, surviving MK migrate to endosteal surfaces where osteoblast (OB) lineage cells dramatically increase and promote engraftment of transplanted HSC. Here we investigated if MK directly impact hematopoiesis or whether they indirectly support HSC function through their interaction with OB-lineage cells. Our data suggests that LSK (Lin-Sca+CD117+, an enriched HSC population) co-cultured with MK and OB generate significantly higher numbers of colony forming cells (HSC function) compared to LSK cocultured with either MK or OB alone. The functionality of this in vitro data was confirmed in vivo with transplantation studies which showed increased engraftment in mice transplanted with LSK cells co-cultured with OB and MK compared to LSK cells co-cultured with OB alone. To test if loss of MK negatively impacts osteoblastogenesis, we generated conditional knockout mice where cMpl, the receptor for the main MK growth factor, thrombopoietin (TPO), was deleted in MK (cMplfl/fl x PF4Cre). Unexpectedly, these mice exhibited a 10-fold increase in platelet numbers, megakaryocytosis, a dramatic expansion of phenotypically defined hematopoietic precursors, and a remarkable 20-fold increase in the bone volume fraction. Collectively, these data indicate that while MK modulate HSC function, this activity is in part mediated through interactions with OB and suggest a complex role for TPO and MK in HSC regulation. While work is needed to further elucidate mechanisms, understanding the coordinated interaction between MK, OB, HSC, and TPO/Mpl should inform the development of novel treatments to enhance HSC recovery following myelosuppressive injuries, as well as bone loss diseases, such as osteoporosis

    Thrombopoietin: A Novel Bone Healing Agent

    Get PDF
    poster abstractCritical-size defects in bones do not heal spontaneously and usually require the use of grafts. Unfortunately, grafts have several limitations. To improve bone formation, many clinicians now use bone morphogenetic proteins (BMP), particularly in spinal fusion, fracture healing, and in critical-size defect regeneration. However, multiple side effects of BMP treatment have been uncovered including increased incidence of cancer. Thus, there is great interest in alternatives that allow for safe and effective bone regeneration. Here we show the ability of thrombopoietin (TPO), the main megakaryocyte growth factor, to heal critical-size femoral defects rodents. 5mm or 4mm segmental defects were created in the femur of Long Evans rats or C57BL/6 mice, respectively. The defects were filled with a novel bioabsorbable scaffold which was loaded with recombinant human TPO, BMP-2, or saline, and held stable by a retrograde 1.6 mm intramedullary Kirschner wire (rats) or 23G needle (mice). Xrays were taken every 3 weeks in rats and weekly in mice. Animal were sacrificed at 15 weeks, at which time micro-computed tomography (μCT) and histological analyses were performed. The results observed in mice and rats were similar. The saline control group did not show bridging callus at any time. Both the BMP-2 and TPO groups healed the defect, although bridging callus was evident at earlier times in the BMP-2 groups. However, the TPO groups showed a much more remodeled and physiologic contour on both Xray and μCT. μCT and histological analysis confirms that compared to BMP-2, TPO-treated specimens have a thicker cortex but smaller diameter and smoother contour. TPO appears to restore the original bone contour by stimulating osteoblastogenesis, allowing for periosteal bridging and stabilization to occur, while simultaneously stimulating osteoclast formation. Thus, TPO may serve as a novel bone healing agent

    Pyk2 deficiency potentiates osteoblast differentiation and mineralizing activity in response to estrogen or raloxifene

    Get PDF
    Bone remodeling is controlled by the actions of bone-degrading osteoclasts and bone-forming osteoblasts (OBs). Aging and loss of estrogen after menopause affects bone mass and quality. Estrogen therapy, including selective estrogen receptor modulators (SERMs), can prevent bone loss and increase bone mineral density in post-menopausal women. Although investigations of the effects of estrogen on osteoclast activity are well advanced, the mechanism of action of estrogen on OBs is still unclear. The proline-rich tyrosine kinase 2 (Pyk2) is important for bone formation and female mice lacking Pyk2 (Pyk2-KO) exhibit elevated bone mass, increased bone formation rate and reduced osteoclast activity. Therefore, in the current study, we examined the role of estrogen signaling on the mechanism of action of Pyk2 in OBs. As expected, Pyk2-KO OBs showed significantly higher proliferation, matrix formation, and mineralization than WT OBs. In addition we found that Pyk2-KO OBs cultured in the presence of either 17β-estradiol (E2) or raloxifene, a SERM used for the treatment of post-menopausal osteoporosis, showed a further robust increase in alkaline phosphatase (ALP) activity and mineralization. We examined the possible mechanism of action and found that Pyk2 deletion promotes the proteasome-mediated degradation of estrogen receptor α (ERα), but not estrogen receptor β (ERβ). As a consequence, E2 signaling via ERβ was enhanced in Pyk2-KO OBs. In addition, we found that Pyk2 deletion and E2 stimulation had an additive effect on ERK phosphorylation, which is known to stimulate cell differentiation and survival. Our findings suggest that in the absence of Pyk2, estrogen exerts an osteogenic effect on OBs through altered ERα and ERβ signaling. Thus, targeting Pyk2, in combination with estrogen or raloxifene, may be a novel strategy for the prevention and/or treatment of bone loss diseases

    Pyk2 and Megakaryocytes Regulate Osteoblast Differentiation and Migration Via Distinct and Overlapping Mechanisms

    Get PDF
    Osteoblast differentiation and migration are necessary for bone formation during bone remodeling. Mice lacking the proline-rich tyrosine kinase Pyk2 (Pyk2-KO) have increased bone mass, in part due to increased osteoblast proliferation. Megakaryocytes (MKs), the platelet-producing cells, also promote osteoblast proliferation in vitro and bone-formation in vivo via a pathway that involves Pyk2. In the current study, we examined the mechanism of action of Pyk2, and the role of MKs, on osteoblast differentiation and migration. We found that Pyk2-KO osteoblasts express elevated alkaline phosphatase (ALP), type I collagen and osteocalcin mRNA levels as well as increased ALP activity, and mineralization, confirming that Pyk2 negatively regulates osteoblast function. Since Pyk2 Y402 phosphorylation is important for its catalytic activity and for its protein-scaffolding functions, we expressed the phosphorylation-mutant (Pyk2(Y402F) ) and kinase-mutant (Pyk2(K457A) ) in Pyk2-KO osteoblasts. Both Pyk2(Y402F) and Pyk2(K457A) reduced ALP activity, whereas only kinase-inactive Pyk2(K457A) inhibited Pyk2-KO osteoblast migration. Consistent with a role for Pyk2 on ALP activity, co-culture of MKs with osteoblasts led to a decrease in the level of phosphorylated Pyk2 (pY402) as well as a decrease in ALP activity. Although, Pyk2-KO osteoblasts exhibited increased migration compared to wild-type osteoblasts, Pyk2 expression was not required necessary for the ability of MKs to stimulate osteoblast migration. Together, these data suggest that osteoblast differentiation and migration are inversely regulated by MKs via distinct Pyk2-dependent and independent signaling pathways. Novel drugs that distinguish between the kinase-dependent or protein-scaffolding functions of Pyk2 may provide therapeutic specificity for the control of bone-related diseases

    A novel role for thrombopoietin in regulating osteoclast development in humans and mice

    Get PDF
    Emerging data suggest that megakaryocytes (MKs) play a significant role in skeletal homeostasis. Indeed, osteosclerosis observed in several MK-related disorders may be a result of increased numbers of MKs. In support of this idea, we have previously demonstrated that MKs increase osteoblast (OB) proliferation by a direct cell-cell contact mechanism and that MKs also inhibit osteoclast (OC) formation. As MKs and OCs are derived from the same hematopoietic precursor, in these osteoclastogenesis studies we examined the role of the main MK growth factor, thrombopoietin (TPO) on OC formation and bone resorption. Here we show that TPO directly increases OC formation and differentiation in vitro. Specifically, we demonstrate the TPO receptor (c-mpl or CD110) is expressed on cells of the OC lineage, c-mpl is required for TPO to enhance OC formation in vitro, and TPO activates the mitogen-activated protein kinases, Janus kinase/signal transducer and activator of transcription, and nuclear factor-kappaB signaling pathways, but does not activate the PI3K/AKT pathway. Further, we found TPO enhances OC resorption in CD14+CD110+ human OC progenitors derived from peripheral blood mononuclear cells, and further separating OC progenitors based on CD110 expression enriches for mature OC development. The regulation of OCs by TPO highlights a novel therapeutic target for bone loss diseases and may be important to consider in the numerous hematologic disorders associated with alterations in TPO/c-mpl signaling as well as in patients suffering from bone disorders

    Scaffold-free bioprinting of mesenchymal stem cells using the Regenova printer: Spheroid characterization and osteogenic differentiation

    Get PDF
    Limitations in scaffold material properties, such as sub-optimal degradation time, highlight the need for alternative approaches to engineer de novo tissues. One emerging solution for fabricating tissue constructs is scaffold-free tissue engineering. To facilitate this approach, three-dimensional (3D) bioprinting technology (Regenova Bio 3D Printer) has been developed to construct complex geometric shapes from discrete cellular spheroids without exogenous scaffolds. Optimizing spheroid fabrication and characterizing cellular behavior in the spheroid environment are important first steps prior to printing larger constructs. Here, we characterized spheroids of immortalized mouse bone marrow stromal cells (BMSCs) that were differentiated to the osteogenic lineage. Immortalized BMSCs were seeded in low attachment 96-well plates in various numbers to generate self-aggregated spheroids either under the force of gravity or centrifugation. Cells were cultured in control or osteogenic media for up to 28 days. Spheroid diameter, roundness and smoothness were measured. Cell viability, DNA content and alkaline phosphatase activity were assessed at multiple time points. Additionally, expression of osteogenic markers was determined using real time qPCR. Spheroids formed under gravity with 20 K, 30 K and 40 K cells had average diameters of 498.5 ± 8.3 μm, 580.0 ± 32.9 μm and 639.2 ± 54.0 μm, respectively, while those formed under 300G centrifugation with the same numbers of cells had average diameters of 362.3 ± 3.5 μm, 433.1 ± 6.4 μm and 491.2 ± 8.0 μm. Spheroids formed via centrifugation were superior to those formed by gravity, as evidenced by better roundness and smoothness and double the retention of DNA (cellular) content. Cells in spheroids exhibited a robust osteogenic response to the differentiation medium, including higher mRNA expression of alkaline phosphatase, collagen type I, and osteocalcin than those cultured in control medium, as well as greater alkaline phosphatase activity. The optimal spheroid fabrication technique from this study was to aggregate 40 K cells under 150–300G centrifugation. In future investigations, these spheroids will be 3D printed into larger tissue constructs

    Bibliometric Analysis of Gender Authorship Trends and Collaboration Dynamics over 30 Years of Spine 1985 to 2015

    Get PDF
    Study Design. A bibliometric analysis. Objective. The aim of this article was to study bibliometric changes over the last 30 years of Spine. These trends are important regarding academic publication productivity. Summary of Background Data. Inflation in authorship number and other bibliometric variables has been described in the scientific literature. The issue of author gender is taking on increasing importance, as efforts are being made to close the gender gap. Methods. From 1985 to 2015, 10-year incremental data for several bibliometric variables were collected, including author gender. Standard bivariate statistical analyses were performed. Trends over time were assessed by the Cochran linear trend. A P < 0.05 was considered statistically significant. Results. Inclusion criteria were met for 1566 manuscripts. The majority of the manuscripts were from North America (51.2%), Europe (25.2%), and Asia (20.8%). The number of manuscripts, authors, countries, pages, and references all increased from 1985 to 2015. There was a slight increase in female first authors over time (17.5% to 18.4%, P = 0.048). There was no gender change over time for corresponding authors (14.3% to 14.0%, P = 0.29). There was an 88% increase in the percentage of female first authors having male corresponding authors (P = 0.00004), and a 123% increase in male first authors having female corresponding authors (P = 0.0002). The 14% to 18% of female authors in Spine is higher than the ∼5% female membership of the Scoliosis Research Society and North American Spine Society. Conclusion. Manuscripts in Spine over the past 30 years have shown a significant increase in the number of authors, collaborating institutions and countries, printed pages, references, and number of times each manuscript was cited. There has been a mild increase in female first authorship, but none in corresponding authorship. Increases in female authorship will likely require recruitment of more females into the discipline rather than providing females in the discipline with authorship opportunities. Level of Evidence: N/

    A Comprehensive Review of Mouse Diaphyseal Femur Fracture Models

    Get PDF
    Complications related to treatment of long bone fractures still stand as a major challenge for orthopaedic surgeons. Elucidation of the mechanisms of bone healing and development, and the subsequent alteration of these mechanisms to improve outcomes, typically requires animal models as an intermediary between in vitro and human clinical studies. Murine models are some of the most commonly used in translational research, and mouse fracture models are particularly diverse, offering a wide variety of customization with distinct benefits and limitations depending on the study. This review critically examines three common femur fracture models in the mouse, namely cortical hole, 3-point fracture (Einhorn), and segmental bone defect. We lay out the general procedure for execution of each model, evaluate the practical implications and important advantages/disadvantages of each and describe recent innovations. Furthermore, we explore the applications that each model is best adapted for in the context of the current state of murine orthopaedic research
    • …
    corecore