5 research outputs found

    Progress on perovskite materials for energy application

    Get PDF
    Energy underlies the human development and welfare. Today energy depends on combustion of fossil fuels (coal, natural gas, oil) sources. These sources have not only led to severe environmental issues because it emits greenhouse gases, they are rapidly depleted due to their enormous consumption. For several years’ numerous technologies have been developed to address the fossil fuel depletion and greenhouse gases emission from the non-renewable in order to constantly supply energy to the people and industries. However, the challenge of being able to store energy generated and utilize it later is a matter of importance when resolving energy problems persists. New materials, particularly perovskites offer a great advantage to be utilized as a possible host or carriers for energy applications. The impact of defect on the material properties and influence of defects as material for energy application is described. The use of perovskites oxides for effective electrocatalysis in hydrogen evolution reactions, photocataysis, photovoltaic solar cells, electrocatalysis, solid oxide fuel cells, supercapacitors and metal-air batteries, are also included. This review covers the latest progress on perovskite oxides as electrochemical energy materials

    Instrumental techniques for characterization of molybdenum disulphide nanostructures

    Get PDF
    The excellent chemical and physical properties of materials (nanomaterials) with dimensions of less than 100 nm (nanometers) resulted in researchers and industrialists to have great interest in their discovery and applications in various systems/applications. As their sizes are reduced to nanoscale, these nanomaterials tend to possess exceptional properties differing from those of their bulk counterparts; hence, they have found applications in electronics and medicines. In order to apply them in those applications, there is a need to synthesise these nanomaterials and study their structural, optical, and electrochemical properties. Among several nanomaterials, molybdenum disulphide (MoS2) has received a great interest in energy applications due to its exceptional properties such as stability, conductivity, and catalytic activities. Hence, the great challenge lies in finding the state-of-the-art characterization techniques to reveal the different properties of MoS2 nanostructures with great accuracy. In this regard, there is a need to study and employ several techniques to accurately study the surface chemistry and physics of the MoS2 nanostructures. Hence, this review will comprehensively discuss a detailed literature survey on analytical techniques that can be used to study the chemical, physical, and surface properties of MoS2 nanostructures, namely, ultraviolet-visible spectroscopy (UV-vis), photoluminescence spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, time-of-flight secondary ion mass spectroscopy (TOF-SIMS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning and transmission electron microscopies (SEM and TEM), atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDS/X), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and electroanalytical methods which include linear sweep (LSV) and cyclic (CV) voltammetry and electrochemical impedance spectroscopy (EIS)

    Polyaniline-Based Nanocomposites for Environmental Remediation

    Get PDF
    With growth in civilisation and industrialisation, there is an increase in the release of toxic heavy metal ions and dyes into water system, which is of public concern. As a result, appropriate treatment methods have to be implemented in order to mitigate and prevent water pollution. The discovery of nanotechnology has led to the development and utilisation of various nanoadsorbent for the removal of pollutants from water. PANI nanostructures and nanocomposites are noble adsorbents that have gained popularity in addressing water pollution issues and have been reported in literature. In this chapter, the main focus is on the synthesis of PANI nanocomposites and nanostructures and their application as efficient adsorbents for water treatment. Detailed discussions on different synthetic routes and characterisation have been dedicated to applications of these materials and are compared for the adsorptive removal of heavy metal ions and dyes from water
    corecore