92 research outputs found

    Art Directed Shader for Real Time Rendering - Interactive 3D Painting

    Get PDF
    In this work, I develop an approach to include Global Illumination (GI) effects in non-photorealistic real-time rendering; real-time rendering is one of the main areas of focus in the gaming industry and the booming virtual reality(VR) and augmented reality(AR) industries. My approach is based on adapting the Barycentric shader to create a wide variety of painting effects. This shader helps achieve the look of a 2D painting in an interactively rendered 3D scene. The shader accommodates robust computation to obtain artistic reflection and refraction. My contributions can be summarized as follows: Development of a generalized Barycentric shader that can provide artistic control, integration of this generalized Barycentric shader into an interactive ray tracer, and interactive rendering of a 3D scene that closely represent the reference painting

    Clostridium leptum group bacteria abundance and diversity in the fecal microbiota of patients with inflammatory bowel disease: a case–control study in India

    Get PDF
    BACKGROUND: Alterations in the fecal bacterial flora occur in inflammatory bowel disease (IBD). We examined the abundance and diversity of Clostridium leptum group, an important group of carbohydrate-fermenting bacteria, in the feces of patients with IBD and compared them with healthy controls. METHODS: Seventeen healthy controls (HC), 20 patients with Crohn’s disease (CD) and 22 patients with ulcerative colitis (UC) participated in the study. DNA extracted from fecal samples was amplified by PCR targeting 16S rRNA gene sequences specific to C. leptum group. The PCR product was subjected to temporal temperature gradient electrophoresis (TTGE) and the number and position of individual bands were noted and diversity was estimated. The identity of bands at different positions was confirmed by cloning and sequencing. Real time quantitative PCR with Mesa Green, targeted at specific 16S rRNA gene sequences, was used to quantitate C. leptum group and its most prominent constituent, Faecalibacterium prausnitzii. RESULTS: Twenty five different operational taxonomic units (OTUs, equivalent to species) were identified constituting the C. leptum group in these participants. Their sequences were deposited in GenBank [accession numbers GQ465348 to GQ465370]. OTU number was significantly reduced in CD (7.7±3.7, mean±SD) and UC (9.0±3.0) compared to HC (11.9±2.2) (P=0.0005). The Simpson D index of alpha diversity was not significantly different between the three groups. Total numbers of C. leptum group bacteria and F. prausnitzii were reduced in both CD and UC compared to HC (P=0.0036 and P<0.0001 respectively). Disease activity did not influence numbers of C. leptum or F. prausnitzii in patients with CD or UC. CONCLUSION: C. leptum numbers and diversity were significantly reduced in both CD and UC suggesting that alterations noted were not specific to one disease. This could contribute to reduced short chain fatty acid production in IBD

    Effect of yoghurt containing Bifidobacterium lactis Bb12Âź on faecal excretion of secretory immunoglobulin A and human beta-defensin 2 in healthy adult volunteers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Probiotics are used to provide health benefits. The present study tested the effect of a probiotic yoghurt on faecal output of beta-defensin and immunoglobulin A in a group of young healthy women eating a defined diet.</p> <p>Findings</p> <p>26 women aged 18-21 (median 19) years residing in a hostel were given 200 ml normal yoghurt every day for a week, followed by probiotic yoghurt containing <it>Bifidobacterium lactis </it>Bb12<sup>Âź </sup>(10<sup>9 </sup>in 200 ml) for three weeks, followed again by normal yoghurt for four weeks. Stool samples were collected at 0, 4 and 8 weeks and assayed for immunoglobulin A and human beta-defensin-2 by ELISA. All participants tolerated both normal and probiotic yoghurt well. Human beta-defensin-2 levels in faeces were not altered during the course of the study. On the other hand, compared to the basal sample, faecal IgA increased during probiotic feeding (P = 0.0184) and returned to normal after cessation of probiotic yoghurt intake.</p> <p>Conclusions</p> <p><it>Bifidobacterium lactis </it>Bb12<sup>Âź </sup>increased secretory IgA output in faeces. This property may explain the ability of probiotics to prevent gastrointestinal and lower respiratory tract infections.</p

    Faecalibacterium prausnitzii : from microbiology to diagnostics and prognostics

    Get PDF
    We thank Dr Xavier Aldeguer and MD David Busquets from the Hospital Dr Josep Trueta (Girona, Spain) and M.D MĂ­riam Sabat Mir from the Hospital Santa Caterina (Salt, Spain) for their help and critical discussion concerning clinical aspects. This work was partially funded by the Spanish Ministry of Education and Science through the projects SAF2010-15896 and SAF2013-43284-P, which has been co-financed with FEDER funds. Dr Sylvia H Duncan acknowledges support from the Scottish Government Food, Land and People program.Peer reviewedPostprin

    Alterations of mucosal microbiota in the colon of patients with inflammatory bowel disease revealed by real time polymerase chain reaction amplification of 16S ribosomal ribonucleic acid

    No full text
    Background & objectives: Alterations in microbial communities closely associated with the intestinal mucosa are likely to be important in the pathogenesis of inflammatory bowel disease (IBD). We examined the abundance of specific microbial populations in colonic mucosa of patients with ulcerative colitis (UC), Crohnâ€Čs disease (CD) and controls using reverse transcription quantitative polymerase chain reaction (RT-qPCR) amplification of 16S ribosomal ribonucleic acid (16S rRNA). Methods: RNA was extracted from colonic mucosal biopsies of patients with UC (32), CD (28) and patients undergoing screening colonoscopy (controls), and subjected to RT-qPCR using primers targeted at 16S rRNA sequences specific to selected microbial populations. Results: Bacteroides-Prevotella-Porphyromonas group and Enterobacteriaceae were the most abundant mucosal microbiota. Bacteroides and Lactobacillus abundance was greater in UC patients compared with controls or CD. Escherichia coli abundance was increased in UC compared with controls. Clostridium coccoides group and C. leptum group abundances were reduced in CD compared with controls. Microbial population did not differ between diseased and adjacent normal mucosa, or between untreated patients and those already on medical treatment. The Firmicutes to Bacteroidetes ratio was significantly decreased in both UC and CD compared with controls, indicative of a dysbiosis in both conditions. Interpretation & conclusions: Dysbiosis appears to be a primary feature in both CD and UC. Microbiome-directed interventions are likely to be appropriate in therapy of IBD

    Data_Sheet_1_Gut microbiota of preterm infants in the neonatal intensive care unit: a study from a tertiary care center in northern India.docx

    No full text
    IntroductionDisruptions of the gut microbiota of preterm infants admitted to the neonatal intensive care unit (NICU) during the first 2 weeks of life are of critical importance. These infants are prone to various complications, including necrotizing enterocolitis (NEC) and sepsis. Studying the gut microbiota will improve outcomes in preterm infants. In the present study, we examined the gut microbiota of preterm infants admitted to the NICU in the first month of life.MethodsNeonates admitted to the NICU were recruited, and stool samples were collected weekly from the seventh day of the infant’s life until the 30th day of life. DNA was extracted using a DNeasy Powersoil DNA isolation kit. 16S rRNA gene sequencing targeting the V3–V4 region was performed using the MiSeq platform. Sequenced reads were processed on DADA2 pipeline to obtain an amplicon sequence variant (ASV) table. All bioinformatic and statistical analyses were performed using different packages in the R statistical framework.ResultsFourteen preterm infants were recruited, and 48 samples were collected. Alpha diversity metrics, observed ASV count, and Shannon index were found to have no differences in any clinical variables. Permutational multivariate analysis of variance (PERMANOVA) showed discrimination of neonates by gestational age and administration of probiotics. Differential abundance analysis showed a decreased abundance of Bifidobacterium Breve in extremely preterm infants (gestational age ConclusionGestational age and probiotic supplementation alter the gut microbiota of preterm infants admitted to the NICU.</p
    • 

    corecore