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ABSTRACT 26 

There is an increasing interest in Faecalibacterium prausnitzii, one of the most 27 

abundant bacterial species found in the gut, given its potentially important role in 28 

promoting gut health. Although some studies have phenotypically characterized strains 29 

of this species, it remains a challenge to determine which factors play a key role in 30 

maintaining the abundance of this bacterium in the gut. Besides, phylogenetic analysis 31 

has shown that at least two different F. prausnitzii phylogroups can be found within this 32 

species and their distribution is different between healthy subjects and patients with gut 33 

disorders. It also remains unknown whether or not there are other phylogroups within 34 

this species, and also if other Faecalibacterium species exist. Finally, many studies have 35 

shown that F. prausnitzii abundance is reduced in different intestinal disorders. It has 36 

been proposed that F. prausnitzii monitoring may therefore serve as biomarker to assist 37 

in gut diseases diagnostics. In this mini-review, we aim to give an overview of F. 38 

prausnitzii phylogeny, ecophysiology, and diversity. In addition, strategies to modulate 39 

the abundance of F. prausnitzii in the gut as well as its application as a biomarker for 40 

diagnostics and prognostics of gut diseases are discussed. This species may be a useful 41 

potential biomarker to assist in ulcerative colitis and Crohn’s disease discrimination. 42 

43 
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INTRODUCTION 44 

Faecalibacterium prausnitzii has been consistently reported as one of the main 45 

butyrate producers found in the intestine (Barcenilla et al., 2000, Duncan et al., 2002). 46 

Butyrate plays a crucial role in gut physiology and host wellbeing. It is the main energy 47 

source for the colonocytes and it has protective properties against colorectal cancer and 48 

inflammatory bowel diseases (Archer et al., 1998, Christl et al., 1996). Butyrate can 49 

reduce intestinal mucosa inflammation through inhibiting NF-κB transcription factor 50 

activation (Inan et al., 2000), upregulating PPARγ (Schwab et al., 2007) and inhibiting 51 

interferon gamma (IFN-γ) (Klampfer et al., 2003).  52 

Additional anti-inflammatory properties have been attributed to this species 53 

through its capability to induce a tolerogenic cytokine profile (with very low secretion 54 

of pro-inflammatory cytokines like IL-12 and IFN-γ, and an elevated secretion of the 55 

anti-inflammatory cytokine IL-10) (Qiu et al., 2013, Sokol et al., 2008b). In line with 56 

this findings, F. prausnitzii cells or their cell-free supernatant have been reported to 57 

reduce the severity of acute (Sokol et al., 2008b), chronic (Martin et al., 2014) and low 58 

grade (Martin et al., 2015) chemical-induced inflammation in murine models. These 59 

anti-inflammatory effects were partly associated with secreted metabolites capable of 60 

blocking NF-κB activation, IL-8 production (Sokol et al., 2008b) and upregulation of 61 

regulatory T cells production (Qiu et al., 2013). Recently seven peptides that derive 62 

from a single microbial anti-inflammatory molecule, a 15 kDa protein, have been 63 

identified in F. prausnitzii cultures supernatant, and their capability to block NF-κB 64 

pathway has been demonstrated (Quevrain et al., 2015).  65 

F. prausnitzii supernatant has also been shown to attenuate the severity of 66 

inflammation through the release of metabolites that enhance the intestinal barrier 67 

function and that affect paracellular permeability (Carlsson et al., 2013, Martin et al., 68 
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2015). The mechanism by which F. prausnitzii ameliorates permeability seems to be 69 

related with expression of certain tight junction proteins, but not with an enhancement 70 

of claudin expression (Carlsson et al., 2013). Besides, a recent study performed using a 71 

gnotobiotic model has shown that F. prausnitzii could also influence gut physiology 72 

through mucus pathway and the production of mucus O-glycans, and may help to 73 

maintain suitable proportions of different cell types of secretory linage in the intestinal 74 

epithelium (Wrzosek et al., 2013). Finally, a restoration of serotonin (a key 75 

neurotransmitter in the gastrointestinal tract that affects motility (Ohman and Simren 76 

2007)) level to normal has been evidenced in murine models treated with either F. 77 

prausnitzii or its supernatant (Martin et al., 2015), and this species anti-nociceptive 78 

effect in non-inflammatory IBS-like murine models has been recently evidenced 79 

(Miquel et al., 2016). 80 

Besides, over the last few years an increasing number of studies have reported 81 

on Faecalibacterium prausnitzii depletion in gut diseases (Balamurugan et al., 2008, de 82 

Goffau et al., 2013, Frank et al., 2007, Furet et al., 2010, Hansen et al., 2012, Jia et al., 83 

2010, Kabeerdoss et al., 2013, Karlsson et al., 2013, Machiels et al., 2013, Martinez-84 

Medina et al., 2006, McLaughlin et al., 2010, Miquel et al., 2013, Qin et al., 2010, 85 

Rajilic-Stojanovic et al., 2011, Sobhani et al., 2011, Sokol et al., 2008a, Sokol et al., 86 

2009, Swidsinski et al., 2005, Swidsinski et al., 2008, Vermeiren et al., 2012, Willing et 87 

al., 2009), which has prompted interest in considering this bacterium as a new 88 

generation probiotic. 89 

Taken all together these findings indicate that F. prausnitzii plays a crucial role 90 

maintaining gut physiology and host well-being. It still remains elusive however which 91 

gut factors modulate F. prausnitzii presence in the gut, and the extent of their influence. 92 

 93 

94 
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FACTORS SUPPORTING F. PRAUSNITZII PRESENCE IN THE GUT. 95 

(i) Carbon sources used by F. prausnitzii for growth 96 

F. prausnitzii isolates can grow well using simple carbohydrates (Table 1), but 97 

some differences exist between strains in their capability to ferment more complex 98 

carbohydrates such as those that are either host or diet derived, as observed by the 99 

maximum OD650 that cultures can reach (Duncan et al., 2002, Lopez-Siles et al., 2012). 100 

Despite most F. prausnitzii strains are able to ferment inulin (Table 1), the 101 

findings show that only two of them can grow well on this substrate (final OD650~0.8). 102 

This supports the observed stimulation of this species in nutritional interventions with 103 

this prebiotic (Ramirez-Farias et al., 2009), and suggests that only some members of F. 104 

prausnitzii population are selectively stimulated by inulin (Chung et al., 2016). Strains 105 

of this species have a limited ability to utilize other polysaccharides found in the gut 106 

lumen such as arabinogalactan, xylan and soluble starch (Louis et al., 2007). Most of 107 

the isolates can grow on apple pectin and are able to use some pectin derivatives 108 

(Lopez-Siles et al., 2012). In vitro studies suggested that, under physiological 109 

conditions, F. prausnitzii can play a key role in fermentation of some types of pectin 110 

and that it can compete successfully with other gut bacteria for this substrate (Lopez-111 

Siles et al., 2012). These results are supported by the fact that pectinolytic enzymes 112 

have been found encoded in the F. prausnitzii reference genome (Heinken et al., 2014). 113 

Besides, an in vivo study has shown that Firmicutes are promoted in apple pectin-fed 114 

rats (Licht et al., 2010). Taken together this suggests that pectin or pectin derivatives 115 

could be used as a novel prebiotic approach to stimulate F. prausnitzii (Chung et al., 116 

2016). 117 

In addition, F. prausnitzii strains can also utilize N-acetylglucosamine (Lopez-118 

Siles et al., 2012), a constituent of the glycoproteins found in gut mucosa (Salvatore et 119 
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al., 2000). Interestingly, it has been reported that treatment with this compound may 120 

improve Crohn’s disease (CD) as it will serve as a healing factor in inflamed, damaged 121 

soft tissues of the gut (Salvatore et al., 2000). Therefore, given the capability to ferment 122 

this carbohydrate by F. prausnitzii, it would be of interest to explore the effect of 123 

restoring this beneficial gut bacterium in CD patients undergoing this treatment. 124 

Finally, F. prausnitzii isolates are unable to utilize mucin or 125 

mucopolysaccharides (Lopez-Siles et al., 2012), although some controversy exists 126 

because it has been shown that mucin may stimulate growth of this species (Sadaghian 127 

Sadabad et al., 2015). The mechanism by which F. prausnitzii would benefit from 128 

mucin metabolism remains unknown, and further studies to reveal its interaction with 129 

mucin-degraders would be of interest. 130 

F. prausnitzii has the ability to switch between substrates derived from the diet 131 

or the host. This capability should be explored further to define novel strategies to 132 

restore F. prausnitzii populations in the diseased gut by using some of these 133 

carbohydrates alone or in combination as prebiotics. In vivo studies on healthy human 134 

volunteers revealed a clear stimulation of F. prausnitzii after various prebiotic 135 

treatments (Benus et al., 2010, Hooda et al., 2012, Ramirez-Farias et al., 2009). It 136 

remains to be established which particular subtypes of F. prausnitzii populations change 137 

under prebiotic intakes. In addition, it would be interesting to conduct 138 

metatranscriptomic studies in order to determine if F. prausnitzii genes participate in 139 

breakdown of these substrates. Besides, this will also provide some clues on cross-140 

feeding relationships between F. prausnitzii and other members of the gut microbiota. 141 

(ii) Effect of gut physicochemical conditions 142 
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Tolerance to changes in gut physiological factors can play a role in determining 143 

the ability of an organism to survive in this environment, and they contribute to the 144 

temporal/spatial organization of different gut microbes (Parfrey and Knight 2012). 145 

The optimal pH for F. prausnitzii growth ranges between 5.7 and 6.7 (Foditsch 146 

et al., 2014, Lopez-Siles et al., 2012), the range of pH found in the colon. While there 147 

are differences in tolerance between strains in the pH range of 5-5.7 (Lopez-Siles et al., 148 

2012), no growth was observed at pH values between 3.5 and 4.5 (Foditsch et al., 149 

2014). This suggests that pH influences F. prausnitzii distribution along the gut. This 150 

species has been detected also in duodenum (pH range 5.7-6.4) (Nadal et al., 2007) and 151 

in the terminal ileum (Lopez-Siles et al., 2014, Lopez-Siles et al., 2016) in healthy 152 

subjects and patients with gut disorders. As it has been reported that ulcerative colitis 153 

(UC) and CD patients often have acidic stools (Barkas et al., 2013, Nugent et al., 2001), 154 

it remains to be demonstrated whether or not local pH in the gut is modulating F. 155 

prausnitzii abundance and composition in patients with gut disorders such as 156 

inflammatory bowel disease (IBD). 157 

F. prausnitzii is also highly sensitive to a slight increase in physiological 158 

concentrations of bile salts because its growth is compromised by concentrations of 159 

0.5% (wt/vol). This provides a plausible explanation for the reduced abundance of F. 160 

prausnitzii exhibited by CD patients, as increased bilirubin concentrations have been 161 

reported in these patients, especially in those with ileal disease involvement, and who 162 

have undergone intestinal resection (Lapidus and Einarsson 1998, Pereira et al., 2003). 163 

Besides, differences in tolerance among isolates have been reported, especially at a bile 164 

salt concentration of 0.1% (wt/vol) (Foditsch et al., 2014, Lopez-Siles et al., 2012), 165 

suggesting that alterations in bile salts concentrations may determine a variation in F. 166 

prausnitzii subtype composition. As CD patients also feature an altered bile salt 167 
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composition (Lapidus and Einarsson 1998, Pereira et al., 2003), further studies need to 168 

be conducted to determine if F. prausnitzii features higher sensitivity to certain types of 169 

bile salt components, and to establish whether or not different bile salt profiles alter F. 170 

prausnitzii subtype composition.  171 

F. prausnitzii is extremely oxygen-sensitive (Duncan et al., 2002), but it is 172 

capable of withstanding low levels of oxygen found in the intestinal mucosa by using 173 

extracellular electron transfer in the presence of flavine and cysteine or glutathione 174 

(Khan et al., 2012). Recently, it has been demonstrated that strain A2-165 can retain 175 

viability in ambient air for 24 h when formulated with these antioxidants and inulin as a 176 

cryoprotectant (Khan et al., 2014). Because oxygen gradient plays an important role in 177 

defining the spatial organization of microbes in the colon (Parfrey and Knight 2012, 178 

Swidsinski et al., 2005), it would be interesting to determine if there are differences in 179 

oxygen tolerance among F. prausnitzii subtypes, and if it correlates with inflamed state 180 

of the mucosa. 181 

Finally, the availability of essential nutrients to support F. prausnitzii may 182 

influence the distribution of this species in the gut. A recent study based on a functional 183 

metabolic map of F. prausnitzii strain A2-165 has predicted its inability to synthesize 184 

the amino acids alanine, cysteine, methionine, serine, and tryptophan (Heinken et al., 185 

2014). Auxotrophy for vitamins and cofactors as biotin, folate, niacin, panthothenate, 186 

pyridoxine and thiamine has been observed by further analysis of other F. prausnitzii 187 

strain genomes, and some discrepancy between strains seems to exist in relation to 188 

riboflavin production, which could be due to inter-strain differences (Heinken et al., 189 

2014, Magnusdottir et al., 2015). In contrast, this species has been predicted as a 190 

cobalamin producer (Magnusdottir et al., 2015). Evidence that some IBD patients are 191 

predisposed to feature cobalamin deficiency has been reported (Battat et al., 2014), but 192 
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the cause of this condition has not been established yet. As there is a lack of consistent 193 

clinical data that indicates predisposition of IBD patients to this deficiency (Battat et al., 194 

2014), it would be interesting to establish if it is associated with depletion of cobalamin-195 

producers in the gut.  196 

Collectively, these findings provide a plausible explanation why F. prausnitzii is 197 

reduced in abundance in patients with gut disease. Besides, it points out crucial 198 

requirements in physicochemical conditions for survival of this species, which can be 199 

applied in the future to use this bacterium to treat intestinal disorders related to its 200 

depletion. 201 

(iii) F. prausnitzii in relation to other members of gut microbiota 202 

F. prausnitzii co-occurs with several members of the C. coccoides group and 203 

Bacteroidetes in the gut (Qin et al., 2010). It has been suggested that F. prausnitzii may 204 

rely on other species like Bacteroides for cross-feeding. In co-culture experiments it has 205 

been observed that F. prausnitzii fermentative activity continues while B. 206 

thetaiotaomicron is fermenting pectin (Chung et al., 2016, Lopez-Siles et al., 2012). 207 

This could partially be explained by the acetate produced by the latter, which enhances 208 

F. prausnitzii growth (Heinken et al., 2014). Besides, initial fermentation of pectin by 209 

B. thetaiotaomicron can release pectin derivatives which can then be used by F. 210 

prausnitzii.  211 

Recent studies in rat models have revealed that F. prausnitzii needs the prior 212 

presence of B. thetaiotaomicron to colonize the gut (Wrzosek et al., 2013). The inability 213 

to maintain F. prausnitzii mono-associated animal models has been repeatedly observed 214 

(Hoffmann et al., 2015, Wrzosek et al., 2013) and a mouse model has also been 215 

described in which F. prausnitzii implantation in the gastrointestinal tract requires prior 216 

preparation with E. coli (Miquel et al., 2015). Correlation between these two species has 217 
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been found in IBD patients (Lopez-Siles et al., 2014). Positive or negative correlation 218 

was observed depending on the disease location. This suggests the effect of one 219 

population on the other although the influence of host factors cannot be ruled out. 220 

Depending on patients’ condition, these correlations involved specifically one or the 221 

two phylogroups of F. prausnitzii (Lopez-Siles et al., 2016), so future studies of co-222 

culture experiments could further elucidate the interactions between E. coli and F. 223 

prausnitzii. 224 

225 
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TAXONOMY AND PHYLOGENY OF F. PRAUSNITZII  226 

Duncan and co-workers (Duncan et al., 2002) established that the genus 227 

Faecalibacterium is related to members of Clostridium cluster IV (Clostridium leptum 228 

group), within the Firmicutes phylum, Clostridia class, and Ruminococcaceae family. 229 

Currently, F. prausnitzii is the only Faecalibacterium species which has been 230 

successfully isolated. 231 

 (i) F. prausnitzii intraspecies diversity 232 

More recent phylogenetic characterization of isolates determined that this 233 

species includes two phylogroups, which share 97% 16S rRNA gene sequence 234 

similarity (Lopez-Siles et al., 2012). Although genomic coherence remains to be 235 

explored, in silico analyses of sequenced genomes (Table 2) reveals that the average 236 

nucleotide identity (ANI) between isolates S3L/3 (phylogroup I) and L2/6 (phylogroup 237 

II) is below 94%, thus supporting the hypothesis that these would belong to two 238 

different genomospecies (i.e. species defined by genome comparisons, but without 239 

phenotypic properties defined yet (Rossello-Mora and Amann 2015, Schloter et al., 240 

2000)). Besides, isolates S3L/3 and M21/2 (both from phylogroup I) share ANI values 241 

over 97% confirming that they belong to the same genomospecies. The accurate 242 

sequencing and annotation of several F. prausnitzii strains genomes is required to 243 

provide conclusive information to establish whether or not the two phylogroups belong 244 

to different genomospecies or genomovars (i.e. strains which are phylogenetically 245 

different but phenotypically indistinguishable (Rossello-Mora and Amann 2015, 246 

Schloter et al., 2000)). 247 

With regard to phenotypic coherence, no statistically significant differences have 248 

been found concerning carbohydrate fermentation or tolerance to changes in gut 249 

environmental conditions, although there are indicators that differences do exist 250 



12 
 

between the members of the two phylogroups (Table 3). For instance, F. prausnitzii 251 

S3L/3 has been shown to produce significantly higher amounts of metabolites derived 252 

from phenylalanine, tyrosine and tryptophan metabolism than strain M21/2, despite 253 

both belonging to phylogroup I (Russell et al., 2013). The link of F. prausnitzii with 254 

tyrosine metabolism has been corroborated in fecal samples of healthy subjects (Jansson 255 

et al., 2009). Because the release of different metabolites by gut bacteria can have direct 256 

effect on different host signalling pathways, it is possible that within F. prausnitzii 257 

populations there are members that interact in a different manner with the host. 258 

Supporting this hypothesis, it has been demonstrated that F. prausnitzii ATCC27768 259 

(phylogroup I) and F. prausnitzii A2-165 (phylogroup II) are associated with the 260 

modulation of host metabolites related to different pathways (Jansson et al., 2009, Li et 261 

al., 2008) (Table 3). Prevalence and/or abundance of both phylogroups varies among 262 

patients suffering gut disorders such as CD, UC and type 2 diabetes (Hippe et al., 2016, 263 

Lopez-Siles et al., 2015, Lopez-Siles et al., 2016), and further metabolomic studies are 264 

needed to establish the effects of that in host wellbeing. 265 

 (ii) Approaching the real diversity of the genus Faecalibacterium  266 

Recent studies on species diversity and abundance in healthy and diseased gut 267 

samples however suggest that other F. prausnitzii phylotypes exist (Lopez-Siles et al., 268 

2015, Lopez-Siles et al., 2016) and the presence of other species within the 269 

Faecalibacterium genus cannot be ruled out. These have been estimated by molecular 270 

methods analyzing the overall bacterial community in fecal samples to represent around 271 

2% of Faecalibacterium sequences (Tap et al., 2009, Walker et al., 2011), and 272 

corroborated using species-specific primers (Lopez-Siles et al., 2015). Interestingly, 273 

rare phylotypes have been mainly recovered from subjects with gut disease (Lopez-Siles 274 

et al., 2016). Further studies based on next generation sequencing may help to 275 
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corroborate the presence of these rare phylotypes, and would provide an opportunity to 276 

elucidate the taxonomy within the genus Faecalibacterium.  277 

278 
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F. PRAUSNITZII POPULATIONS IN HEALTHY AND DISEASED GUT 279 

 (i) F. prausnitzii population composition and richness 280 

Overall a decrease in gut microbiota diversity has been reported in the mucosa of 281 

IBD patients (Barnich and Darfeuille-Michaud 2007, Chassaing and Darfeuille-282 

Michaud 2011, Ott et al., 2008, Seksik et al., 2006, Sokol et al., 2008a, Tamboli et al., 283 

2004). In particular, fewer types of Firmicutes, mostly from Ruminococcaceae, were 284 

observed in feces of CD patients (Scanlan et al., 2006). Regarding F. prausnitzii 285 

population, subtypes richness is also lower in IBD patients, which frequently tend to 286 

only possess one of the two main phylogroups (Lopez-Siles et al., 2015). 287 

IBD, colorectal cancer (CRC), irritable bowel syndrome (IBS) and healthy 288 

subjects feature a different composition of F. prausnitzii subtypes (Lopez-Siles et al., 289 

2015). Although some phylotypes have been specifically associated to each condition, 290 

the main members of the F. prausnitzii population (four phylotypes, two phylogroups) 291 

have been detected in all the subject groups but with a different distribution between 292 

conditions (Lopez-Siles et al., 2015). As factors explaining these differences remain 293 

unknown, further studies of isolation and characterization of strains from patients 294 

suffering intestinal disorders are needed to test the effect of either host or gut 295 

physicochemical factors on different F. prausnitzii subtypes. 296 

(ii) F. prausnitzii load  297 

Several studies have reported F. prausnitzii depletion in adult CD (Frank et al., 298 

2007, Fujimoto et al., 2013, Martinez-Medina et al., 2006, Miquel et al., 2013, Sokol et 299 

al., 2008b, Sokol et al., 2009, Swidsinski et al., 2008, Willing et al., 2009), UC 300 

(Kabeerdoss et al., 2013, Lopez-Siles et al., 2014, Lopez-Siles et al., 2016, Machiels et 301 

al., 2013, McLaughlin et al., 2010, Sokol et al., 2009, Swidsinski et al., 2005, 302 

Vermeiren et al., 2012) and CRC (Balamurugan et al., 2008, Lopez-Siles et al., 2016) 303 
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subjects, and concur with the view that down-shifts in F. prausnitzii numbers occur 304 

under several pathological disorders. In contrast, other studies have reported no 305 

depletion in F. prausnitzii levels in CRC (Balamurugan et al., 2008, Sobhani et al., 306 

2011, Wang et al., 2012), and even increased F. prausnitzii abundance in de-novo 307 

pediatric CD patients (Hansen et al., 2012). Besides, a consensus on whether or not IBS 308 

patients feature a depletion of F. prausnitzii has not been reached since both studies 309 

reported normal counts (Duboc et al., 2012, Jia et al., 2010, Kassinen et al., 2007, 310 

Lopez-Siles et al., 2014, Lopez-Siles et al., 2016, Malinen et al., 2005, Rigsbee et al., 311 

2012, Swidsinski et al., 2005, Swidsinski et al., 2008) and studies reporting lower 312 

numbers in IBS patients of alternating type (Rajilic-Stojanovic et al., 2011) have also 313 

been published. The variety of symptoms featured by IBS patients makes IBS 314 

diagnostics complex, which in turn is likely to make it difficult to establish whether or 315 

not F. prausnitzii is affected in this intestinal condition. Altogether, the exact role that 316 

F. prausnitzii plays in the pathogenesis of these diseases cannot be established at this 317 

stage. On the one hand an external factor can cause a downshift in F. prausnitzii, but 318 

also this species depletion can be a contributing factor to disease aggravation. In this 319 

case, restoration of normal counts of this species should be explored as a way to achieve 320 

healing and/or attenuate disease progression. 321 

Although the depletion of F. prausnitzii is not a specific phenomenon that occurs 322 

in a particular disease, the level of depletion as well as which components of the F. 323 

prausnitzii population are affected can be different between diseases. Depletion in 324 

phylogroup I abundance is a general feature in abnormal gut conditions, while 325 

phylogroup II reduction seems to be specific to CD patients, usually with ileal disease 326 

location (Lopez-Siles et al., 2016). This could be the consequence of several factors 327 

(physicochemical, host-related or microbiome-related) that may vary between disorders 328 
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and can affect either some or all F. prausnitzii members. In turn, these different 329 

populations can have a direct effect in host wellbeing. For instance, a recent study has 330 

shown different F. prausnitzii profiles in obese subjects with and without developed 331 

type two diabetes (Hippe et al., 2016), suggesting that differences in phylotypes may 332 

lead to differences in inflammatory status in the host, thus having an influence on 333 

disease development. Currently, studies on anti-inflammatory properties of F. 334 

prausnitzii have been performed with strain A2-165, from phylogroup II. Similar 335 

studies conducted with strains representative of phylogroup I (e.g. ATCC27768) are 336 

required in order to determine whether or not there are differences between phylogroups 337 

regarding anti-inflammatory activity. 338 

 339 

340 
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FUTURE PERSPECTIVES: POTENTIAL USE OF F. PRAUSNITZII AS A 341 

HEALTHY GUT MICROBIOTA BIOMARKER. 342 

(i) F. prausnitzii load as diagnostic supporting tool  343 

The usefulness of gut microbiota assessment to support intestinal diseases 344 

diagnostics and or prognostics has gained interest during the last few years. Some 345 

studies have pointed out that the abundance of fecal or mucosa-associated F. prausnitzii 346 

is a potential biomarker to discriminate between gut disorders (Lopez-Siles et al., 2014, 347 

Lopez-Siles et al., 2016, Swidsinski et al., 2008). In particular, F. prausnitzii is a good 348 

biomarker to discriminate CD and CRC from healthy subjects as well as CD from IBS 349 

(Figure 1). Of interest, F. prausnitzii phylogroup I is particularly good in discriminating 350 

healthy subjects from gut disease cohorts including IBS, IBD and CRC (Lopez-Siles et 351 

al., 2016), while phylogroup II has a limited use as biomarker. This could be partially 352 

explained by the fact that phylogroup II load is less reduced in intestinal disease.  353 

It is difficult however to establish the use of a single bacterial species as a 354 

general biomarker for all disease types. F. prausnitzii in conjunction with E. coli 355 

abundance as a complementary indicator (F-E index) has been proven to be a better 356 

biomarker than F. prausnitzii alone (Lopez-Siles et al., 2014). This index allows good 357 

discrimination of CRC patients from other gut disorders, especially UC. The F-E index 358 

is also a good biomarker to differentiate UC and IBS patients from those with CD. 359 

However, the heterogeneity of disease subtypes is preventing discrimination between 360 

conditions. 361 

(ii) F. prausnitzii load as IBD subtype biomarker 362 

An accurate discrimination between UC and CD is of relevance due to 363 

differences in treatment and management between these two entities (Mowat et al., 364 

2011). An unmet need in IBD diagnostics is to have a fast and reliable biomarker to 365 
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distinguish within IBD subtypes, particularly those with shared location of 366 

inflammation, but the number of studies that have explored this issue is limited (Lopez-367 

Siles et al., 2014, Lopez-Siles et al., 2016).  368 

We observed that F-E index is a suitable biomarker to discriminate ulcerative 369 

proctitis and left-sided UC from pancolitis (Lopez-Siles et al., 2014), which is of 370 

interest for clinicians to monitor risk of extension of the inflamed area in UC (Figure 2). 371 

This index was shown also to distinguish between all UC patients regardless of their 372 

disease subtypes and those with C-CD with suitable accuracy (Figure 2). In contrast, 373 

F. prausnitzii alone or phylogroup quantification showed limited ability to discriminate 374 

between IBD subtypes. Whether or not F. prausnitzii phylogroup quantification in 375 

conjunction with E. coli counts are more accurate biomarkers remains to be explored. 376 

As the discrimination power of F-E index is limited for some disease subtypes, it 377 

could be worth to include additional biomarker characteristics of UC dysbiosis such as 378 

Roseburia hominis (Machiels et al., 2013), CD dysbiosis such as Ruminococcus gnavus, 379 

R. torques, Dialister invisus or Bifidobacterium adolescentis (Joossens et al., 2011, 380 

Martinez-Medina et al., 2006, Png et al., 2010), as well as other bacterial indicators of 381 

gut health such as Akkermansia muciniphila (Png et al., 2010). A combination of 382 

microbiological indicators with host serological data is also an approach to be further 383 

explored to improve diagnostics accuracy, since it has been reported that active CD and 384 

UC can be differentiated through monitoring fecal F. prausnitzii abundance in 385 

conjunction with leukocyte counts (Swidsinski et al., 2008) 386 

(iii) F. prausnitzii load as a biomarker of disease progression and treatment 387 

success. 388 

Given the chronic behavior of IBD, it would be interesting to have a prognostic 389 

biomarker for flare-ups. High F. prausnitzii counts in feces have been associated with 390 
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lower Crohn’s disease activity index (CDAI) and C-reactive protein levels (Fujimoto et 391 

al., 2013). F. prausnitzii level recovery has been reported in feces during remission 392 

(Sokol et al., 2009, Swidsinski et al., 2008), while it has been observed that in mucosa, 393 

depletion of this species occurs regardless of patients disease activity status (Kabeerdoss 394 

et al., 2013, Lopez-Siles et al., 2014, Lopez-Siles et al., 2016, Willing et al., 2009), and 395 

particularly compromises phylogroup I (Lopez-Siles et al., 2016). Differences in the 396 

methodology or the cohort engaged as well as the type of sample analyzed may be a 397 

confounding factor that is preventing an unanimous outcome about the usefulness of F. 398 

prausnitzii to predict flare-ups. Subsequent follow-up studies are needed to conclusively 399 

establish which clinical data of the patients correlate with the quantity of F. prausnitzii 400 

colonizing the gut. 401 

Several studies have shown that F. prausnitzii numbers are reduced in resected 402 

CD patients in comparison to those without resection (Lopez-Siles et al., 2014, Sokol et 403 

al., 2008b). We observed that this phenomenon is replicated with phylogroup counts 404 

(Lopez-Siles et al., 2016), with more evident depletion of phylogroup II. However, 405 

whether this shift is a consequence of these patients featuring a more acute disease, or if 406 

it is the outcome of the surgery is still unclear. It would be interesting to conduct 407 

follow-up studies to assess the usefulness of this biomarker to precisely predict when 408 

such interventions might be needed. 409 

As far as therapies are concerned, treatments with infliximab and high-dose 410 

cortisol have been associated with an increase of F. prausnitzii levels (Swidsinski et al., 411 

2008). Chemotherapy and interferon α-2b reverse the depletion of F. prausnitzii in 412 

patients with neuroendocrine tumour of the midgut, whereas somatostatin analogues 413 

have no influence on this species (Dorffel et al., 2012). These results suggest that 414 

restoration of the gut conditions due to medication can have an effect on 415 
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counterbalancing F. prausnitzii depletion in the diseased intestine. In contrast, other 416 

studies have not found a medication associated with the recovery of normal levels of 417 

this species in the mucosa, suggesting that F. prausnitzii would be a poor biomarker to 418 

monitor treatment efficacy (Busquets et al., 2015, Lopez-Siles et al., 2014, Lopez-Siles 419 

et al., 2016). However, since these studies are retrospective, further prospective studies 420 

are required to establish the usefulness of these biomarkers to monitor long-term 421 

treatment efficacy, and to relate impact of medication in this species load in the gut. 422 

(iv) Sample of choice to implementation in diagnostics 423 

When analyzing data by sample location, it was observed that colonic biopsies 424 

were the most suitable to distinguish disease phenotypes (Lopez-Siles et al., 2014). 425 

Although statistical significance was not reached for rectal samples, similar results were 426 

obtained. To validate these results would be of interest since rectal sigmoidoscopy is a 427 

non-invasive method to collect tissue samples which will allow implementing mucosa-428 

associated F. prausnitzii quantification in routine clinical practice. Alternatively, the 429 

validation in samples collected with rectal swabs, which have been reported to have a 430 

great similarity to biopsy specimens (Albenberg et al., 2014) would also be of interest. 431 

Nevertheless, it would be of interest to determine if fecal total abundance of F. 432 

prausnitzii and of both phylogroups can be a suitable biomarker for the detection, 433 

follow up and/or classification of IBD phenotypes. The implementation of F. prausnitzii 434 

counts in feces seems a promising strategy as a biomarker, because it has been already 435 

proven to discriminate between active UC and CD patients (Swidsinski et al., 2008) and 436 

thus would provide a straightforward method to assess IBD. However, further 437 

optimization to fine-tune this tool to achieve discrimination within IBD subtypes and 438 

also applicable in patients in remission phases is needed. 439 

CONCLUDING REMARKS 440 
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F. prausnitzii is a metabolically versatile microorganism, and this may explain its wide 441 

distribution and high load as part of the gut microbiota in humans. Two phylogroups 442 

have been described so far within this species, although the real diversity of the genus 443 

remains unknown. F. prausnitzii is an important bacterium for human health but, 444 

members of this speceis are very sensitive to changes in gut environment which can 445 

limit its distribution, particularly in a diseased gut. Changes in this species population 446 

richness and quantity have been observed in several intestinal disorders (Figure 3). 447 

There is a lot of information still missing on which phylogroup is important under 448 

which conditions in the gut. As the depletion of this species is not homogeneous in all 449 

gut diseases however, the use of F. prausnitzii as a gold standard measure of a healthy 450 

gut microbiota is limited. Nevertheless, it is a good biomarker of certain gut conditions.  451 

It has the potential to assist in discriminating between UC and CD subtypes, particularly 452 

those with colonic disease location. Besides, discrimination between UC and CRC 453 

could be a further application of particular interest for this biomarker, in order to 454 

monitor disease progression since chronic colonic inflammation can lead to tumour 455 

formation. As studies in this field are somewhat limited, and a consensus has not yet 456 

been established, there is a need to conduct more studies to fully implement F. 457 

prausnitzii as a biomarker by defining in which medical condition it could be of 458 

assistance. Preferably, these studies should be conducted in larger independent cohorts 459 

of patients that include individuals from different ethnicities. 460 
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FIGURE LEGENDS 795 

Figure 1. Biomarker of choice to discriminate between conditions. Selected pair wise 796 

comparisons of conditions are represented taking into account the difficulty of diagnosis 797 

or the risk of progression. The four options of biomarkers (F. prausnitzii, the two 798 

phylogroups or the F. prausnitzii-E. coli index calculated as (Lopez-Siles et al., 2014)), 799 

have been ranked according to their discriminative power estimated as the sum of all the 800 

AUC values for all the pair wise comparisons taking into account all the conditions. For 801 

each comparison, the highest AUC value achieved is depicted. 802 

H, healthy control group; UC, ulcerative colitis; CD, Crohn’s disease; IBD, 803 

inflammatory bowel disease; IBS, irritable bowel syndrome; CRC, colorectal cancer; F, 804 

total F. prausnitzii load; PHG I, F. prausnitzii phylogroup I load; PHG II, F. prausnitzii 805 

phylogroup II load; F-E index, F. prausnitzii- E. coli index; AUC, area under the ROC 806 

curve; ROC, receiver operating characteristic curve. 807 

Figure 2. Biomarker of choice to discriminate between IBD locations. Selected pair 808 

wise comparisons of conditions are represented taking into account the difficulty of 809 

diagnosis or the risk of progression. The four options of biomarkers (F. prausnitzii, the 810 

two phylogroups or F. prausnitzii-E. coli index calculated as (Lopez-Siles et al., 2014)), 811 

have been ranked according to their discriminative power estimated as the sum of all the 812 

AUC values for all the pair wise comparisons taking into account all the conditions. For 813 

each comparison, the highest AUC value achieved is depicted. 814 

E1, Ulcerative proctitis, E2, Distal or left-sided ulcerative colitis; E3, pancolitis or 815 

universal colitis; I-CD, ileal Crohn’s disease; IC-CD, ileocolonic Crohn’s disease; C-816 

CD, colonic Crohn’s disease; F, total F. prausnitzii load; PHG I, F. prausnitzii 817 

phylogroup I load; PHG II, F. prausnitzii phylogroup II load; F-E index, F. prausnitzii- 818 
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E. coli index; AUC, area under the ROC curve; ROC, receiver operating characteristic 819 

curve. 820 

Figure 3. F. prausnitzii populations in healthy gut and in patients with inflammatory 821 

bowel disease (IBD). In IBD patients, alteration of gut environment may affect F. 822 

prausnitzii population composition and load. These differences can be monitored to 823 

discriminate within IBD subtypes. 824 

 825 
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Table 1. Substrates of different origin metabolised by Faecalibacterium prausnitzii 

isolates in vitro (batch pure cultures) as reported by (Duncan, et al. 2002, Lopez-Siles, 

et al. 2012). 

 
  Substrate No. of utilizers No. of strains tested 
Simple carbohydratesa   
 Glucose 11 11 
 Fructose 4 4 
 Cellobiose 10 11 
 Maltose 10 11 
 Galactose 9 10 
 Galacturonic acid 7 9 
 Sucrose 2 4 
 Melezitose 1 4 
 Trehalose 1 4 
 Rhamnose 1 11 
Amino acidsb   
 Arginine 4 4 
 Histidine arylamide 4 4 
 Glycine arylamide 2 4 
Diet-derivedc   
 Fructo-oligosacharides 4 4 
 Pectin (apple) 10 10 
 Inulin (chicory) 9 11 
Host-derivedd   
 Glucosamine HCl 10 10 
 N-acetylglucosamine 9 10 
 Glucuronic acid 6 10 

a Other simple carbohydrates tested but non-metabolised are mannitol (0/3), melibiose (0/4), raffinose 

(0/4), ribose (0/4), fucose (0/10), arabinose (0/11) and xylose(0/11) 

b Other amino acids tested but non-metabolised are alanine (0/4), glutamic acid (0/4), glutamyl (0/4), 

leucine (0/4), leucine-glycine (0/4), phenylalanine (0/4), proline (0/4), pyroglutamic acid (0/4), serine 

(0/4), tyrosine (0/4) 

c Other diet-derived carbohydrates not metabolised are arabinogalactan (0/10), citrus pectin (0/10), 

polygalacturonic acid (0/10), xylan (0/10) and potato starch (8/11) which depends on the solubility of the 

starch as F. prausnitzii does not metabolise starch. 

d Other host-derived carbohydrates not metabolised are choindrotin sulphate (0/10), heparin (0/10), 

hyaluronic acid (0/10), pig gastric mucin (0/10) 

 



Table 2. Average nucleotide identity (ANI) values for paired comparisons between F. 

prausnitzii strains whose genome has been fully sequenced. Phylogroup for each strain 

is indicated in brackets. Values corresponding to the same genomospecies are indicated 

in boldface.  

ANIb* values ANIm** values 
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M21/2 (I) 85.26 83.29 82.11 96.70§ M21/2(I) 89.02 88.52 88.07 97.34§

KLE1255 (nd)  82.79 82.46 84.70 KLE1255 (nd)  88.31 88.65 88.82 

A2-165 (II) 82.77  82.60 82.74 A2-165(II) 88.31  88.23 88.28 

L2/6(II) 82.33 82.87  81.61 L2/6(II) 88.65 88.23  87.99 
 

nd, not determined 

* ANIb, average nucleotide identity based on BLAST searches of 1 kb genome fragments against a target 

genome.  

** ANIm, average nucleotide identity based on the MUMmer algorithm that does not require the artificial 

generation of 1kb fragments. 

ANIb has better application for distant genomes comparison, while both algorithms give nearly identical 

values in the high identity range (80-100%). 

§ It has been shown that ANI values higher than 94% embraces organisms sharing DNA-DNA 

hybridization (DDH) values higher than 70% which are considered to be genomospecies. 



Table 3. Summary of F. prausnitzii phylogroups I and II characteristics. No statistically 
significant differences have been found between the members of the two phylogroups 
for any of the characteristics analyzed. 
 

 Phylogroup I Phylogroup II  
Strains 

ATCC27768, M21/2, 
S3L/3, S4L/4 

A2-165, L2-6, L2-15, L2-
39, L2-61, HTF-A, HTF-
B, HTF-C, HTF-E, HTF-
F, HTF-I, HTF-75H, HTF-
60C 

Gut distribution Feces and mucosa Feces and mucosa 
Genome size (mean Mb±SD)* 3.17±0.06 3.21±0.16 
GC content (mean %±SD)* 55.85±0.49 56.45±0.21 
Genes content (mean±SD)* 2881.5±92.6 2892.5±102.5 
Proteins content (mean±SD)* 2778.5±46.0 2725.5±43.1 
Carbohydrate utilisation (mean OD650±SD) ** 
 Glucose 0.750±0.311 0.428±0.228 
 Cellobiose 0.665±0.277 0.383±0.312 
 Maltose 0.685±0.247 0.603±0.273 
 Galacturonic acid 0.373±0.208 0.165±0.086 
 Galactose 0.435±0.369 0.630±0.183 
 Apple pectin 0.408±0.108 0.270±0.224 
 Inulin 0.115±0.065 0.510±0.440 
 Glucuronic acid 0.150±0.113 0.360±0.410 
 N-Acetylgucosamine 0.615±0.224 0.388±0.369 
 Glucosamine HCl 0.345±0.177 0.267±0.336 
Tolerance to pH (mean growth rate±SD)** 
 6.7 0.210±0.070 0.256±.0151 
 6.2 0.192±0.050 0.245±0.159 
 5.75 0.081±0.039 0.108±0.042 
Tolerance to bile salts (mean maximum OD650±SD)** 
 0% 0.717±0.427 0.613±0.202 
 0.12% 0.174±0.223 0.071±0.150 
 0.25% 0.032±0.037 0.014±0.014 
 0.5% 0.026±0.033 0.002±0.005 
SCFA production (mM ±SD) §

Formate 3.508±2.730 15.190±11.856 
Acetate -8.917±11.288 -3.192±9.256 
Butyrate 18.524±11.151 23.882±5.386 
D-Lactate 2.014±1.992 2.435±0.865 

Association with host 
metabolites (adapted from (Li, et 
al. 2008)) 

Decrease in dihydrothymine 
and an increase in 4-

hydroxyphenylacetylglycine

Decreased levels of 3-
aminoisobutyrate, taurine, 

3,5-hydroxylbenzoate, 
dimethylamine, 2-

hydroxyisobutyrate, 
glycolate and increased 

lactate and glycine 
Abundance in gut disorders§§ 

(adapted from (Hippe et al., 2016, 
Lopez-Siles et al., 2016)) 

Depletion in IBS, CRC and 
IBD patients, particularly in 

active CD 

Depletion in CD patients, 
especially those with 
intestinal resection. 



Associated to type 2 
diabetes. 

* For these calculations phylogroup I included isolates M21/2 and S3L/3 and phylogroup II consisted of 

L2/6 and A2-165 isolates 

** For these calculations ATCC27768, M21/2, S3L/3 and S4L/4 (phylogroup I) and A2-165, L2-15, L2-

39, L2/6, HTF-F and HTF-75H (phylogroup II) were used (Lopez-Siles, et al. 2012) 

§ Short chain fatty acids produced by strains ATCC27768, M21/2, S3L/3 and S4L/4 (phylogroup I) and 

A2-165 and L2-6 (phylogroup II) on YCFA medium supplemented with 0.5% (wt/vol) glucose (Lopez-

Siles et al., 2012) 

§§ IBS, irritable bowel syndrome; CRC, colorectal cancer; IBD, inflammatory bowel disease; CD, Crohn’s 

disease  
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