45 research outputs found

    Editorial: Heterogeneity of ILC2s

    Get PDF

    Genome-wide SNP analysis reveals population structure and demographic history of the ryukyu islanders in the southern part of the Japanese archipelago.

    Get PDF
    The Ryukyu Islands are located to the southwest of the Japanese archipelago. Archaeological evidence has revealed the existence of prehistoric cultural differentiation between the northern Ryukyu islands of Amami and Okinawa, and the southern Ryukyu islands of Miyako and Yaeyama. To examine a genetic subdivision in the Ryukyu Islands, we conducted genome-wide single nucleotide polymorphism typing of inhabitants from the Okinawa Islands, the Miyako Islands, and the Yaeyama Islands. Principal component and cluster analyses revealed genetic differentiation among the island groups, especially between Okinawa and Miyako. No genetic affinity was observed between aboriginal Taiwanese and any of the Ryukyu populations. The genetic differentiation observed between the inhabitants of the Okinawa Islands and the Miyako Islands is likely to have arisen due to genetic drift rather than admixture with people from neighboring regions. Based on the observed genetic differences, the divergence time between the inhabitants of Okinawa and Miyako islands was dated to the Holocene. These findings suggest that the Pleistocene inhabitants, whose bones have been found on the southern Ryukyu Islands, did not make a major genetic contribution, if any, to the present-day inhabitants of the southern Ryukyu Islands

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    Anti-TSLP antibodies: Targeting a master regulator of type 2 immune responses

    Get PDF
    TSLP is an epithelial cell-derived cytokine synthesized in response to various stimuli, including protease allergens and microorganisms like viruses and bacteria. Biological functions of TSLP require heterodimer formation between the TSLP receptor (TSLPR) and IL-7 receptor-α, which polarize dendritic cells to induce type 2 inflammation and directly expand and/or activate Th2 cells, group 2 innate lymphoid cells, basophils, and other immune cells. TSLP is thus considered a master regulator of type 2 immune responses at the barrier surfaces of skin and the respiratory/gastrointestinal tract. Indeed, genetic, experimental, and clinical evidence suggests that the TSLP-TSLPR pathway is associated with the pathogenesis of allergic diseases such as atopic dermatitis (AD) and asthma. Tezepelumab (AMG-157/MEDI9929) is a human anti-TSLP antibody that prevents TSLP-TSLPR interactions. A phase 2 trial for moderate to severe AD showed that a greater but not statistically significant percentage of tezepelumab-treated patients showed clinical improvements compared to the placebo group. A phase 2 trial for uncontrolled, severe asthma showed significant decreases in asthma exacerbation rate and improved pulmonary function and asthma control for tezepelumab-treated patients. Levels of biomarkers of type 2 inflammation, such as blood/sputum eosinophil counts and fraction of exhaled nitric oxide decreased, however, clinical efficacy was observed irrespective of the baseline levels of these biomarkers. A blockade of the TSLP-TSLPR pathway likely will exert significant clinical effects on AD, asthma, and other allergic diseases. The efficacy of anti-TSLP antibodies compared to other biologics needs to be further examined

    Dynamic Behavior of Segmented-in-Series Tubular Solid Oxide Fuel Cell upon Discharge

    Get PDF
    Dynamic behavior of the segmented-in-series tubular solid oxide fuel cell upon discharge was investigated. The cell performance decreased initially at 900℃, accompanied by the increase of ohmic resistance. Lower partial pressure of oxygen in the cathode resulted in a more severe decrease, whereas the gas displacement in the anode compartment did not induce such behavior. As the current was cut off, the ohmic resistance rapidly recovered toward the starting value before current load. The possible origin for this increase-recovery behavior of the ohmic resistance has been discussed based on the evaluation of oxygen partial pressure at the cathode/electrolyte interface and element interdiffusion between cathode and electrolyte

    Protocol for lentiviral vector-based gene transfection in human ILC2s

    No full text
    Summary: Modifying gene expression in lymphocytes is essential for immunological research; however, gene transfection methods for group 2 innate lymphoid cells (ILC2s) are not well established. Here, we present a protocol utilizing lentiviral vectors to introduce genes into human ILC2s. We detail steps for lentiviral solution preparation, transfection, and selection of transfected cells. This protocol allows overexpression or suppression of specific genes and evaluation of the changes in ILC2 biology.For complete details on the use and execution of this protocol, please refer to Irie et al. (2023).1 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics

    Group 2 innate lymphoid cells and asthma

    Get PDF
    Group 2 innate lymphoid cells (ILC2s) are recently identified cell populations that produce type 2 cytokines such as IL-5 and IL-13 in response to epithelial cell-derived cytokines. Although ILC2s were initially reported to play a key role in the anti-helminth innate immunity, we now have greater interest in their role in asthma and other allergic diseases. In various asthma mouse models, ILC2s provoke eosinophilic inflammation accompanied by airway hyperresponsiveness independent of acquired immunity. Moreover, recent mouse studies show that ILC2s also promote acquired immunity and Th2 polarization, and various cytokines and lipid mediators influence the functions of ILC2s. Although ILC2s have also been identified in humans, studies on the role of human ILC2s in asthma are very limited. Thus far, human studies have shown that there is a slight difference in responsiveness and production of cytokines between mouse and human ILC2s, and it has been suggested that ILC2s are involved in allergic-type asthma and the exacerbation of asthma. In this review, we focus on mouse and human ILC2s, and discuss their role in asthma
    corecore