198 research outputs found

    Survey propagation for the cascading Sourlas code

    Full text link
    We investigate how insights from statistical physics, namely survey propagation, can improve decoding of a particular class of sparse error correcting codes. We show that a recently proposed algorithm, time averaged belief propagation, is in fact intimately linked to a specific survey propagation for which Parisi's replica symmetry breaking parameter is set to zero, and that the latter is always superior to belief propagation in the high connectivity limit. We briefly look at further improvements available by going to the second level of replica symmetry breaking.Comment: 14 pages, 5 figure

    Analysis of common attacks in LDPCC-based public-key cryptosystems

    Get PDF
    We analyze the security and reliability of a recently proposed class of public-key cryptosystems against attacks by unauthorized parties who have acquired partial knowledge of one or more of the private key components and/or of the plaintext. Phase diagrams are presented, showing critical partial knowledge levels required for unauthorized decryptionComment: 14 pages, 6 figure

    Perceptron capacity revisited: classification ability for correlated patterns

    Full text link
    In this paper, we address the problem of how many randomly labeled patterns can be correctly classified by a single-layer perceptron when the patterns are correlated with each other. In order to solve this problem, two analytical schemes are developed based on the replica method and Thouless-Anderson-Palmer (TAP) approach by utilizing an integral formula concerning random rectangular matrices. The validity and relevance of the developed methodologies are shown for one known result and two example problems. A message-passing algorithm to perform the TAP scheme is also presented

    Dynamical replica analysis of disordered Ising spin systems on finitely connected random graphs

    Full text link
    We study the dynamics of macroscopic observables such as the magnetization and the energy per degree of freedom in Ising spin models on random graphs of finite connectivity, with random bonds and/or heterogeneous degree distributions. To do so we generalize existing implementations of dynamical replica theory and cavity field techniques to systems with strongly disordered and locally tree-like interactions. We illustrate our results via application to the dynamics of e.g. ±J\pm J spin-glasses on random graphs and of the overlap in finite connectivity Sourlas codes. All results are tested against Monte Carlo simulations.Comment: 4 pages, 14 .eps file

    Probabilistic Reconstruction in Compressed Sensing: Algorithms, Phase Diagrams, and Threshold Achieving Matrices

    Full text link
    Compressed sensing is a signal processing method that acquires data directly in a compressed form. This allows one to make less measurements than what was considered necessary to record a signal, enabling faster or more precise measurement protocols in a wide range of applications. Using an interdisciplinary approach, we have recently proposed in [arXiv:1109.4424] a strategy that allows compressed sensing to be performed at acquisition rates approaching to the theoretical optimal limits. In this paper, we give a more thorough presentation of our approach, and introduce many new results. We present the probabilistic approach to reconstruction and discuss its optimality and robustness. We detail the derivation of the message passing algorithm for reconstruction and expectation max- imization learning of signal-model parameters. We further develop the asymptotic analysis of the corresponding phase diagrams with and without measurement noise, for different distribution of signals, and discuss the best possible reconstruction performances regardless of the algorithm. We also present new efficient seeding matrices, test them on synthetic data and analyze their performance asymptotically.Comment: 42 pages, 37 figures, 3 appendixe

    Optimal Resource Allocation in Random Networks with Transportation Bandwidths

    Full text link
    We apply statistical physics to study the task of resource allocation in random sparse networks with limited bandwidths for the transportation of resources along the links. Useful algorithms are obtained from recursive relations. Bottlenecks emerge when the bandwidths are small, causing an increase in the fraction of idle links. For a given total bandwidth per node, the efficiency of allocation increases with the network connectivity. In the high connectivity limit, we find a phase transition at a critical bandwidth, above which clusters of balanced nodes appear, characterised by a profile of homogenized resource allocation similar to the Maxwell's construction.Comment: 28 pages, 11 figure

    Inference algorithms for gene networks: a statistical mechanics analysis

    Full text link
    The inference of gene regulatory networks from high throughput gene expression data is one of the major challenges in systems biology. This paper aims at analysing and comparing two different algorithmic approaches. The first approach uses pairwise correlations between regulated and regulating genes; the second one uses message-passing techniques for inferring activating and inhibiting regulatory interactions. The performance of these two algorithms can be analysed theoretically on well-defined test sets, using tools from the statistical physics of disordered systems like the replica method. We find that the second algorithm outperforms the first one since it takes into account collective effects of multiple regulators

    Exact solutions for diluted spin glasses and optimization problems

    Full text link
    We study the low temperature properties of p-spin glass models with finite connectivity and of some optimization problems. Using a one-step functional replica symmetry breaking Ansatz we can solve exactly the saddle-point equations for graphs with uniform connectivity. The resulting ground state energy is in perfect agreement with numerical simulations. For fluctuating connectivity graphs, the same Ansatz can be used in a variational way: For p-spin models (known as p-XOR-SAT in computer science) it provides the exact configurational entropy together with the dynamical and static critical connectivities (for p=3, \gamma_d=0.818 and \gamma_s=0.918 resp.), whereas for hard optimization problems like 3-SAT or Bicoloring it provides new upper bounds for their critical thresholds (\gamma_c^{var}=4.396 and \gamma_c^{var}=2.149 resp.).Comment: 4 pages, 1 figure, accepted for publication in PR

    On analyticity with respect to the replica number in random energy models I: an exact expression of the moment of the partition function

    Full text link
    We provide an exact expression of the moment of the partition function for random energy models of finite system size, generalizing an earlier expression for a grand canonical version of the discrete random energy model presented by the authors in Prog. Theor. Phys. 111, 661 (2004). The expression can be handled both analytically and numerically, which is useful for examining how the analyticity of the moment with respect to the replica numbers, which play the role of powers of the moment, can be broken in the thermodynamic limit. A comparison with a replica method analysis indicates that the analyticity breaking can be regarded as the origin of the one-step replica symmetry breaking. The validity of the expression is also confirmed by numerical methods for finite systems.Comment: 16 pages, 4 figure

    Typical performance of low-density parity-check codes over general symmetric channels

    Get PDF
    Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. Theoretical framework for dealing with general symmetric channels is provided, based on which Gallager and MacKay-Neal codes are studied as examples of LDPC codes. It has been shown that the basic properties of these codes known for particular channels, including the property to potentially saturate Shannon's limit, hold for general symmetric channels. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel noise models.Comment: 10 pages, 4 figures, RevTeX4; an error in reference correcte
    • 

    corecore