748 research outputs found
Purification and Reconstitution of the Glutamate Carrier GltT of the Thermophilic Bacterium Bacillus stearothermophilus
An affinity tag consisting of six adjacent histidine residues followed by an enterokinase cleavage site was genetically engineered at the N-terminus of the glutamate transport protein GltT of the thermophilic bacterium Bacillus stearothermophilus. The fusion protein was expressed in Escherichia coli and shown to transport glutamate. The highest levels of expression were observed in E. coli strain DH5α grown on rich medium. The protein could be purified in a single step by Ni2+-NTA affinity chromatography after solubilization of the cytoplasmic membranes with the detergent Triton X100. Purified GltT was reconstituted in an active state in liposomes prepared from E. coli phospholipids. The protein was reconstituted in detergent-treated preformed liposomes, followed by removal of the detergent with polystyrene beads. Active reconstitution was realized with a wide range of Triton X100 concentrations. Neither the presence of glycerol, phospholipids, nor substrates of the transporter was necessary during the purification and reconstitution procedure to keep the enzyme in an active state. In B. stearothermophilus, GltT translocates glutamate in symport with protons or sodium ions. In membrane vesicles derived from E. coli cells expressing GltT, the Na+ ion dependency seems to be lost, suggesting a role for the lipid environment in the cation specificity. In agreement with the last observation, glutamate transport catalyzed by purified GltT reconstituted in E. coli phospholipid is driven by an electrochemical gradient of H+ but not of Na+.
Delineating Electrogenic Reactions during Lactose/H+ Symport†
Electrogenic reactions accompanying downhill lactose/H+ symport catalyzed by the lactose permease of Escherichia coli (LacY) have been assessed using solid-supported membrane-based electrophysiology with improved time resolution. Rates of charge translocation generated by purified LacY reconstituted into proteoliposomes were analyzed over a pH range from 5.2 to 8.5, which allows characterization of two electrogenic steps in the transport mechanism: (i) a weak electrogenic reaction triggered by sugar binding and observed under conditions where H+ translocation is abolished either by acidic pH or by a Glu325 -> Ala mutation in the H+ binding site (this step with a rate constant of ~200 s-1 for wildtype LacY leads to an intermediate proposed to represent an “occluded” state) and (ii) a major electrogenic reaction corresponding to 94% of the total charge translocated at pH 8, which is pH-dependent with a maximum rate of ~30 s-1 and a pK of 7.5. This partial reaction is assigned to rate-limiting H+ release on the cytoplasmic side of LacY during turnover. These findings together with previous electrophysiological results and biochemical-biophysical studies are included in an overall kinetic mechanism that allows delineation of the electrogenic steps in the reaction pathway
Substrate Specificity within a Family of Outer Membrane Carboxylate Channels
Characterization of a large family of outer membrane channels from gram-negative bacteria suggest how they can thrive in nutrient-poor environments and how channel inactivation can contribute to antibiotic resistance
Synthetic chromosome fusion: Effects on mitotic and meiotic genome structure and function
We designed and synthesized synI, which is ~21.6% shorter than native chrI, the smallest chromosome in Saccharomyces cerevisiae. SynI was designed for attachment to another synthetic chromosome due to concerns surrounding potential instability and karyotype imbalance and is now attached to synIII, yielding the first synthetic yeast fusion chromosome. Additional fusion chromosomes were constructed to study nuclear function. ChrIII-I and chrIX-III-I fusion chromosomes have twisted structures, which depend on silencing protein Sir3. As a smaller chromosome, chrI also faces special challenges in assuring meiotic crossovers required for efficient homolog disjunction. Centromere deletions into fusion chromosomes revealed opposing effects of core centromeres and pericentromeres in modulating deposition of the crossover-promoting protein Red1. These effects extend over 100 kb and promote disproportionate Red1 enrichment, and thus crossover potential, on small chromosomes like chrI. These findings reveal the power of synthetic genomics to uncover new biology and deconvolute complex biological systems </p
Whole-Genome and Chromosome Evolution Associated with Host Adaptation and Speciation of the Wheat Pathogen Mycosphaerella graminicola
The fungus Mycosphaerella graminicola has been a pathogen of wheat since host domestication 10,000–12,000 years ago in the Fertile Crescent. The wheat-infecting lineage emerged from closely related Mycosphaerella pathogens infecting wild grasses. We use a comparative genomics approach to assess how the process of host specialization affected the genome structure of M. graminicola since divergence from the closest known progenitor species named M. graminicola S1. The genome of S1 was obtained by Illumina sequencing resulting in a 35 Mb draft genome sequence of 32X. Assembled contigs were aligned to the previously sequenced M. graminicola genome. The alignment covered >90% of the non-repetitive portion of the M. graminicola genome with an average divergence of 7%. The sequenced M. graminicola strain is known to harbor thirteen essential chromosomes plus eight dispensable chromosomes. We found evidence that structural rearrangements significantly affected the dispensable chromosomes while the essential chromosomes were syntenic. At the nucleotide level, the essential and dispensable chromosomes have evolved differently. The average synonymous substitution rate in dispensable chromosomes is considerably lower than in essential chromosomes, whereas the average non-synonymous substitution rate is three times higher. Differences in molecular evolution can be related to different transmission and recombination patterns, as well as to differences in effective population sizes of essential and dispensable chromosomes. In order to identify genes potentially involved in host specialization or speciation, we calculated ratios of synonymous and non-synonymous substitution rates in the >9,500 aligned protein coding genes. The genes are generally under strong purifying selection. We identified 43 candidate genes showing evidence of positive selection, one encoding a potential pathogen effector protein. We conclude that divergence of these pathogens was accompanied by structural rearrangements in the small dispensable chromosomes, while footprints of positive selection were present in only a small number of protein coding genes
- …