9 research outputs found

    High nickel deposition at low voltage electroplating process by a combination of anions

    Get PDF
    This research has been performed to understand the impact of the combination of nickel anions of sulfate (SO4 2- ), and chloride (Cl- ) in the solution towards nickel deposition. The evaluation was performed for the voltage, weight, and efficiency. The electroplating of nickel was performed by chemical cleaning of the specimen surface, nickel deposition in the nickel solution under specific current density, and post-cleaning to remove the residual solution. The nickel solution was consist of sulfate, and chloride anions compared with nickel sulfate solution only. The result showed that the presence of chloride anions in a sulfate solution lowered the voltage, increased the weight of nickel deposition, and increased efficiency compared with the impact on sulfate solution only. The voltage of a solution consisting of chloride and sulfate decreased by more than 30%, compared with sulfate solution only. The weight of nickel deposited on the specimen surface increased clearly. As the number of chloride anions increased, the nickel deposition increased linearly. Interestingly, the highest nickel weight was achieved at a low chloride anion concentration. The heaviest nickel deposited is 0.7 g was achieved under 0.07 A/cm2 and 15 g/l chloride anions. The nickel deposition efficiency in the combination of sulfate and chloride anions is always higher than 80% compared with nickel sulfate solution only

    Lactic acid production from date juice using lactobacillus casei ATCC 393 in batch fermentation

    No full text
    Lactobacillus casei ATCC 393 was employed as a fermentative organism to convert sugars from date juice into lactic acid. Both glucose and fructose in date juice were fermented directly without any pretreatment. The influences of supplementation of yeast extract and date juice concentration on some fermentation parameters, such as: cell growth rate, sugar conversion, productivity and yield, were investigated using this bacterium in batch fermentation. The results showed that by adding yeast extract about 20g/l in a date juice medium, the maximum specific growth rate of bacteria (ÎŒm) enhanced from 0.1229 to 0.1819 g/l. Meanwhile, increasing date juice concentration from 86.6942 to 158.9181 and 229.5367 g/l enhanced the ÎŒm from 0.1819 to 0.2107 and 0.1916 g/l, respectively. It indicated that the optimum value for ÎŒm is 0.2107 g/l in this concentration range. In the date juice concentration of 158.9181 g/l, the optimum lactic acid can be produced is 117.8301 g/l with yield of 92.685% for 48 h

    Lactic acid production from date juice using

    No full text
    Lactobacillus casei ATCC 393 was employed as a fermentative organism to convert sugars from date juice into lactic acid. Both glucose and fructose in date juice were fermented directly without any pretreatment. The influences of supplementation of yeast extract and date juice concentration on some fermentation parameters, such as: cell growth rate, sugar conversion, productivity and yield, were investigated using this bacterium in batch fermentation. The results showed that by adding yeast extract about 20g/l in a date juice medium, the maximum specific growth rate of bacteria (ÎŒm) enhanced from 0.1229 to 0.1819 g/l. Meanwhile, increasing date juice concentration from 86.6942 to 158.9181 and 229.5367 g/l enhanced the ÎŒm from 0.1819 to 0.2107 and 0.1916 g/l, respectively. It indicated that the optimum value for ÎŒm is 0.2107 g/l in this concentration range. In the date juice concentration of 158.9181 g/l, the optimum lactic acid can be produced is 117.8301 g/l with yield of 92.685% for 48 h

    Kemasan Antistatis Ramah Lingkungan Berbahan Dasar Poli Asam Laktat

    Get PDF
    Kemasan antistatis digunakan untuk melindungi barang elektronik dari kerusakan fisik, lingkungan, dan terhadap electrostatic discharge (ESD). Conductive Polymer Composites (CPC) merupakan material yang dihasilkan dari penambahan nanopartikel konduktif dengan matriks polimer. Poly lactic acid (PLA) atau dikenal dengan poli asam laktat berpotensi sebagai matriks polimer. Carbon nanotubes (CNT) memiliki konduktivitas listrik yang tinggi dikombinasikan dengan rasio aspek yang besar sehingga kompatibel untuk dijadikan filler CPC. Metode penambahan filler dilakukan dengan melt blending dengan presentase berat filler 0; 0,5; 1; dan 1,5 wt%. Komposit nanomaterial PLA/CNT dikarakterisasi menggunakan uji SEM, FTIR, DSC, dan konduktivitas. Hasil uji SEM dan FTIR menunjukkan bahwa Perubahan konsentrasi filler CNT tidak memiliki pengaruh signifikan terhadap morfologi dan struktur CPC. Uji DSC menunjukkan penambahan derajat kristalinitas seiring dengan penambahan konsentrasi CNT. Uji konduktivitas menunjukkan CNT meningkatkan nilai konduktivitas PLA. Nilai konduktivitas PLA menjadi 3,949x10-10 S/cm dan 6,019 x 10-7 S/cm setelah ditambahkan oleh CNT dengan presentase berat sebesar 0,5 wt% dan 1 wt% sehingga memenuhi syarat sebagai kemasan antistatis.Antistatic packaging is used to protect electronic goods from physical damage, the environment, and against electrostatic discharge (ESD). Conductive Polymer Composites (CPC) are materials produced from the addition of conductive nanoparticles with a polymer matrix. Poly lactic acid (PLA) has the potential as a polymer matrix. Carbon nanotubes (CNT) that have high electrical conductivity combined with a large aspect ratio making them compatible to be used as CPC fillers. The method of adding filler was done by melt blending with filler concentrations of 0, 0.5, 1, and 1.5 wt%. PLA/CNT nanomaterial composites were characterized using SEM, FTIR, DSC, and conductivity tests. The results of the SEM and FTIR tests showed that changes in CNT filler concentration did not have a significant effect on the morphology and structure of CPC. DSC test showed an increase in degree of crystallinity along with the addition of CNT concentration. The conductivity test showed that CNT increased the conductivity value of PLA. The conductivity values of PLA become 3.949 x 10-10 S/cm and 6.019 x 10-7 S/cm after being added by CNT of 0.5 wt% and 1 wt% so that they qualify as antistatic packaging

    Modification of poly (lactic acid) through the incorporation of gum rosin and gum rosin derivative: Mechanical performance and hydrophobicity

    No full text
    "This is the peer reviewed version of the following article: De La Rosa-RamĂ­rez, Harrison, Miguel Aldas, JosĂ© Miguel Ferri, Juan LĂłpez-MartĂ­nez, and MarĂ­a Dolores Samper. 2020. "Modification of Poly (Lactic Acid) through the Incorporation of Gum Rosin and Gum Rosin Derivative: Mechanical Performance and Hydrophobicity." Journal of Applied Polymer Science 137 (44). Wiley: 49346. doi:10.1002/app.49346, which has been published in final form at https://doi.org/10.1002/app.49346. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] The modification of PLA by melt compound with gum rosin (GR) and pentaerythritol ester of GR (PEGR) was investigated by studying the mechanical and thermal performance, blends morphology, wettability, and water absorption. Standard testing specimens for characterization were made at a variate resin content of 5, 10, and 15 part per hundred resin (phr) and manufactured by injection molding. It was found that GR and PEGR had a lubricating effect in PLA polymeric chains, resulting in a remarkable increase of 790 and 193% in melt flow index with only 5 phr GR and PEGR contents, respectively. A significant change in more than 10 degrees of increasing water contact angle was observed for PLA with 15 phr PEGR. Thermogravimetric analysis reveals that PEGR led to delayed PLA degradation/decomposition process to higher temperature, increasing the onset temperature (T-5%) in more than 7 degrees C for PLA with 15 phr PEGR.This research was supported by the Ministry of Economy and Competitiveness-PROMADEPCOL Ref: (MAT2017-84909-C2-2-R). Authors also want to acknowledge the postdoc contract offered to JosĂ© Miguel Ferri by the Generalitat Valenciana, which project title is "BIONANOCOMPOSITES BASADOS EN MEZCLAS DE PLA Y TPS CON MEMORIA" (APOSTD/2019/122) GENERALITAT VALENCIANA (2019-2021).Rosa-RamĂ­rez, HDL.; AldĂĄs-Carrasco, MF.; Ferri, J.; LĂłpez-MartĂ­nez, J.; Samper, M. (2020). Modification of poly (lactic acid) through the incorporation of gum rosin and gum rosin derivative: Mechanical performance and hydrophobicity. Journal of Applied Polymer Science. 137(44):1-15. https://doi.org/10.1002/app.4934611513744European Bioplastics. Market data about global production capacity of bioplastics on 2019. [Online] https://www.european-bioplastics.org/market/(accessed February 2020).Muthuraj, R., Misra, M., & Mohanty, A. K. (2017). Biodegradable compatibilized polymer blends for packaging applications: A literature review. Journal of Applied Polymer Science, 135(24), 45726. doi:10.1002/app.45726Koller, M., MarĆĄĂĄlek, L., de Sousa Dias, M. M., & Braunegg, G. (2017). Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnology, 37, 24-38. doi:10.1016/j.nbt.2016.05.001Siracusa, V., Lotti, N., Munari, A., & Dalla Rosa, M. (2015). Poly(butylene succinate) and poly(butylene succinate-co-adipate) for food packaging applications: Gas barrier properties after stressed treatments. Polymer Degradation and Stability, 119, 35-45. doi:10.1016/j.polymdegradstab.2015.04.026Gumede, T. P., Luyt, A. S., & Muller, A. J. (2018). Review on PCL, PBS, and PCL/PBS blends containing carbon nanotubes. Express Polymer Letters, 12(6), 505-529. doi:10.3144/expresspolymlett.2018.43Garcia-Garcia, D., Lopez-Martinez, J., Balart, R., Strömberg, E., & Moriana, R. (2018). Reinforcing capability of cellulose nanocrystals obtained from pine cones in a biodegradable poly(3-hydroxybutyrate)/poly(Δ-caprolactone) (PHB/PCL) thermoplastic blend. European Polymer Journal, 104, 10-18. doi:10.1016/j.eurpolymj.2018.04.036Garcia-Garcia, D., Garcia-Sanoguera, D., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2018). Improvement of mechanical and thermal properties of poly(3-hydroxybutyrate) (PHB) blends with surface-modified halloysite nanotubes (HNT). Applied Clay Science, 162, 487-498. doi:10.1016/j.clay.2018.06.042Garcia-Garcia, D., Ferri, J. M., Boronat, T., Lopez-Martinez, J., & Balart, R. (2016). Processing and characterization of binary poly(hydroxybutyrate) (PHB) and poly(caprolactone) (PCL) blends with improved impact properties. Polymer Bulletin, 73(12), 3333-3350. doi:10.1007/s00289-016-1659-6Arrieta, M. P., Castro-LĂłpez, M. del M., RayĂłn, E., Barral-Losada, L. F., LĂłpez-Vilariño, J. M., LĂłpez, J., & GonzĂĄlez-RodrĂ­guez, M. V. (2014). Plasticized Poly(lactic acid)–Poly(hydroxybutyrate) (PLA–PHB) Blends Incorporated with Catechin Intended for Active Food-Packaging Applications. Journal of Agricultural and Food Chemistry, 62(41), 10170-10180. doi:10.1021/jf5029812Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552-571. doi:10.1111/j.1541-4337.2010.00126.xLim, L.-T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820-852. doi:10.1016/j.progpolymsci.2008.05.004Arrieta, M. P., LĂłpez, J., FerrĂĄndiz, S., & Peltzer, M. A. (2013). Characterization of PLA-limonene blends for food packaging applications. Polymer Testing, 32(4), 760-768. doi:10.1016/j.polymertesting.2013.03.016Liu, M., Zeng, G., Wang, K., Wan, Q., Tao, L., Zhang, X., & Wei, Y. (2016). Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. Nanoscale, 8(38), 16819-16840. doi:10.1039/c5nr09078dUrquijo, J., Guerrica-EchevarrĂ­a, G., & EguiazĂĄbal, J. I. (2015). Melt processed PLA/PCL blends: Effect of processing method on phase structure, morphology, and mechanical properties. Journal of Applied Polymer Science, 132(41), n/a-n/a. doi:10.1002/app.42641Tripathi, N., & Katiyar, V. (2016). PLA/functionalized-gum arabic based bionanocomposite films for high gas barrier applications. Journal of Applied Polymer Science, 133(21), n/a-n/a. doi:10.1002/app.43458Huang, Q., Liu, M., Mao, L., Xu, D., Zeng, G., Huang, H., 
 Wei, Y. (2017). Surface functionalized SiO2 nanoparticles with cationic polymers via the combination of mussel inspired chemistry and surface initiated atom transfer radical polymerization: Characterization and enhanced removal of organic dye. Journal of Colloid and Interface Science, 499, 170-179. doi:10.1016/j.jcis.2017.03.102Huang, Q., Liu, M., Chen, J., Wan, Q., Tian, J., Huang, L., 
 Wei, Y. (2017). Facile preparation of MoS2 based polymer composites via mussel inspired chemistry and their high efficiency for removal of organic dyes. Applied Surface Science, 419, 35-44. doi:10.1016/j.apsusc.2017.05.006Huang, H., Liu, M., Xu, D., Mao, L., Huang, Q., Deng, F., 
 Wei, Y. (2020). Facile fabrication of glycosylated and PEGylated carbon nanotubes through the combination of mussel inspired chemistry and surface-initiated ATRP. Materials Science and Engineering: C, 106, 110157. doi:10.1016/j.msec.2019.110157Pawlak, F., Aldas, M., LĂłpez-MartĂ­nez, J., & Samper, M. D. (2019). Effect of Different Compatibilizers on Injection-Molded Green Fiber-Reinforced Polymers Based on Poly(lactic acid)-Maleinized Linseed Oil System and Sheep Wool. Polymers, 11(9), 1514. doi:10.3390/polym11091514Yang, S., Wu, Z.-H., Yang, W., & Yang, M.-B. (2008). Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polymer Testing, 27(8), 957-963. doi:10.1016/j.polymertesting.2008.08.009Ferri, J. M., Garcia-Garcia, D., SĂĄnchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082Bhasney, S. M., Patwa, R., Kumar, A., & Katiyar, V. (2017). Plasticizing effect of coconut oil on morphological, mechanical, thermal, rheological, barrier, and optical properties of poly(lactic acid): A promising candidate for food packaging. Journal of Applied Polymer Science, 134(41), 45390. doi:10.1002/app.45390Moustafa, H., El Kissi, N., Abou-Kandil, A. I., Abdel-Aziz, M. S., & Dufresne, A. (2017). PLA/PBAT Bionanocomposites with Antimicrobial Natural Rosin for Green Packaging. ACS Applied Materials & Interfaces, 9(23), 20132-20141. doi:10.1021/acsami.7b05557Niu X.;Liu Y.;Song Y.;Han J.;Pan H.2018 183 102.Pavon, C., Aldas, M., LĂłpez-MartĂ­nez, J., & FerrĂĄndiz, S. (2020). New Materials for 3D-Printing Based on Polycaprolactone with Gum Rosin and Beeswax as Additives. Polymers, 12(2), 334. doi:10.3390/polym12020334Mitchell, G. R., Biscaia, S., Mahendra, V. S., & Mateus, A. (2016). High Value Materials from the Forests. Advances in Materials Physics and Chemistry, 06(03), 54-60. doi:10.4236/ampc.2016.63006Wiyono, B., Tachibana, S., & Tinambunan, D. (2006). Chemical Compositions of Pine Resin, Rosin and Turpentine Oil from West Java. Indonesian Journal of Forestry Research, 3(1), 7-17. doi:10.20886/ijfr.2006.3.1.7-17Karlberg, A.-T. (2012). Colophony: Rosin in Unmodified and Modified Form. Kanerva’s Occupational Dermatology, 467-479. doi:10.1007/978-3-642-02035-3_41Liu, B., Nie, J., & He, Y. (2016). From rosin to high adhesive polyurethane acrylate: Synthesis and properties. International Journal of Adhesion and Adhesives, 66, 99-103. doi:10.1016/j.ijadhadh.2016.01.002Kumooka, Y. (2008). Analysis of rosin and modified rosin esters in adhesives by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Forensic Science International, 176(2-3), 111-120. doi:10.1016/j.forsciint.2007.07.009Aldas, M., Ferri, J. M., Lopez‐Martinez, J., Samper, M. D., & Arrieta, M. P. (2019). Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater‐Bi type bioplastic. Journal of Applied Polymer Science, 137(4), 48236. doi:10.1002/app.48236Safety data Sheet. SIGMA‐ALDRICH; 2018.International Standards Organization. ISO 527‐2:2012. Plastics—Determination of tensile properties—Part 2: Test conditions for moulding and extrusion plastics; 2012.International Standards Organization. ISO 1133‐1:2012. Plastics—Determination of the melt mass‐flow rate (MFR) and melt volume‐flow rate (MVR) of thermoplastics—Part 1: Standard method; 2012.International Standards Organization. Plastics—Determination of water absorption; 2008.Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914-925. doi:10.1002/app.34208International Standards Organization. ISO 178:2019. Plastics—Determination of flexural properties; 2019.International Standards Organization. ISO 179‐1:2010. Plastics—Determination of Charpy impact properties—Part 1: Non‐instrumented impact test; 2010.International Standards Organization. ISO 868:2003. Plastics and ebonite—Determination of indentation hardness by means of a durometer (Shore hardness); 2003.International Standards Organization. ISO 306:2013. Plastics—Thermoplastic materials—Determination of Vicat softening temperature (VST); 2013.International Standards Organization. ISO 75:2013. Plastics—Determination of temperature of deflection under load—Part 2: Plastics and ebonite; 2013.Turan, D., Sirin, H., & Ozkoc, G. (2011). Effects of POSS particles on the mechanical, thermal, and morphological properties of PLA and Plasticised PLA. Journal of Applied Polymer Science, 121(2), 1067-1075. doi:10.1002/app.33802Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024Sigma‐Aldrich. Gum Rosin Safety data sheet; 2019; pp 1–8.Siddiki, S. M. A. H., Toyao, T., Kon, K., Touchy, A. S., & Shimizu, K. (2016). Catalytic hydrolysis of hydrophobic esters on/in water by high-silica large pore zeolites. Journal of Catalysis, 344, 741-748. doi:10.1016/j.jcat.2016.08.021Liang, Y.-T., Yang, G.-P., Liu, B., Yan, Y.-T., Xi, Z.-P., & Wang, Y.-Y. (2015). Four super water-stable lanthanide–organic frameworks with active uncoordinated carboxylic and pyridyl groups for selective luminescence sensing of Fe3+. Dalton Transactions, 44(29), 13325-13330. doi:10.1039/c5dt01421bCabaret, T., Boulicaud, B., Chatet, E., & Charrier, B. (2018). Study of rosin softening point through thermal treatment for a better understanding of maritime pine exudation. European Journal of Wood and Wood Products, 76(5), 1453-1459. doi:10.1007/s00107-018-1339-3Ferri, J. M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, O., & Balart, R. (2017). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science, 135(4), 45751. doi:10.1002/app.45751Najafi, N., Heuzey, M. C., Carreau, P. J., & Wood-Adams, P. M. (2012). Control of thermal degradation of polylactide (PLA)-clay nanocomposites using chain extenders. Polymer Degradation and Stability, 97(4), 554-565. doi:10.1016/j.polymdegradstab.2012.01.016Ferri, J. M., Samper, M. D., GarcĂ­a-Sanoguera, D., Reig, M. J., Fenollar, O., & Balart, R. (2016). Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). Journal of Materials Science, 51(11), 5356-5366. doi:10.1007/s10853-016-9838-2Nehra, R., Maiti, S. N., & Jacob, J. (2017). Analytical interpretations of static and dynamic mechanical properties of thermoplastic elastomer toughened PLA blends. Journal of Applied Polymer Science, 135(1), 45644. doi:10.1002/app.45644Odian, G. (2004). Principles of Polymerization. doi:10.1002/047147875xSauer, J. A. (1977). Deformation, yield and fracture of polymers at high pressure. Polymer Engineering and Science, 17(3), 150-164. doi:10.1002/pen.76017030
    corecore