46 research outputs found

    An expert system based intelligent control scheme for space bioreactors

    Get PDF
    An expert system based intelligent control scheme is being developed for the effective control and full automation of bioreactor systems in space. The scheme developed will have the capability to capture information from various resources including heuristic information from process researchers and operators. The knowledge base of the expert system should contain enough expertise to perform on-line system identification and thus be able to adapt the controllers accordingly with minimal human supervision

    Reduced activity of ubiCA in E. coli

    Get PDF
    Production of products by engineered bacteria is increased by regulating cellular respiration. Cellular respiration is controlled by reducing electron transfer enzyme activity. Some examples of electron transfer enzymes include NADH dehydrogenases, Succinate dehydrogenases, ubiquinone synthesis, cytochrome O, and cytochrome D. In one example, deletion of UbiCA prevents respiration. Respiration can the be controlled by addition of ubiquinone or expression of ubiCA

    Bacteria and method for synthesizing fatty acids

    Get PDF
    The present invention discloses a process for increasing the production of free fatty acids at high yield (close to maximum theoretical yield), with various fatty acid compositions and various percentage of fatty acids accumulated intracellularly. This invention will enable the efficient production of other products derived from free fatty acids and/or products that can be branched out from the fatty acid synthesis pathways

    Improvement of NADPH bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains

    Get PDF
    NADPH-dependent reactions play important roles in production of industrially valuable compounds. In this study, we used phosphofructokinase (PFK)-deficient strains to direct fructose-6-phosphate to be oxidized through the pentose phosphate pathway (PPP) to increase NADPH generation. pfkA or pfkB single deletion and double-deletion strains were tested for their ability to produce lycopene. Since lycopene biosynthesis requires many NADPH, levels of lycopene were compared in a set of isogenic strains, with the pfkA single deletion strain showing the highest lycopene yield. Using another NADPH-requiring process, a one-step reduction reaction of 2-chloroacrylate to 2-chloropropionic acid by 2- haloacrylate reductase, the pfkA pfkB double-deletion strain showed the highest yield of 2-chloropropionic acid product. The combined effect of glucose-6-phosphate dehydrogenase overexpression or lactate dehydrogenase deletion with PFK deficiency on NADPH bioavailability was also studied. The results indicated that the flux distribution of fructose-6- phosphate between glycolysis and the pentose phosphate pathway determines the amount of NAPDH available for reductive biosynthesis

    Genetic and metabolic engineering

    Get PDF
    Recent advances in molecular biology techniques, analytical methods and mathematical tools have led to a growing interest in using metabolic engineering to redirect metabolic fluxes for industrial and medical purposes. Metabolic engineering is referred to as the directed improvement of cellular properties through the modification of specific biochemical reactions or the introduction of new ones, with the use of recombinant DNA technology (Stephanopoulos, 1999). This multidisciplinary field draws principles from chemical engineering, biochemistry, molecular and cell biology, and computational sciences. The aim of this article is to give an overview of the various strategies and tools available for metabolic engineers and to review some of the recent work that has been conducted in our laboratories in the metabolic engineering area

    An Algorithm for Modelling Escalator Fixed Loss Energy for PHM and sustainable energy usage

    Full text link
    Prognostic Health Management (PHM) is designed to assess and monitor the health status of systems, anticipate the onset of potential failure, and prevent unplanned downtime. In recent decades, collecting massive amounts of real-time sensor data enabled condition monitoring (CM) and consequently, detection of abnormalities to support maintenance decision-making. Additionally, the utilization of PHM techniques can support energy sustainability efforts by optimizing energy usage and identifying opportunities for energy-saving measures. Escalators are efficient machines for transporting people and goods, and measuring energy consumption in time can facilitate PHM of escalators. Fixed loss energy, or no-load energy, of escalators denotes the energy consumption by an unloaded escalator. Fixed loss energy varies over time indicating varying operating conditions. In this paper, we propose to use escalators' fixed loss energy for PHM. We propose an approach to compute daily fixed loss energy based on energy consumption sensor data. The proposed approach is validated using a set of experimental data. The advantages and disadvantages of each approach are also presented, and recommendations are given. Finally, to illustrate PHM, we set up an EWMA chart for monitoring the fixed loss over time and demonstrate the potential in reducing energy costs associated with escalator operation

    Remaining Useful Life Modelling with an Escalator Health Condition Analytic System

    Full text link
    The refurbishment of an escalator is usually linked with its design life as recommended by the manufacturer. However, the actual useful life of an escalator should be determined by its operating condition which is affected by the runtime, workload, maintenance quality, vibration, etc., rather than age only. The objective of this project is to develop a comprehensive health condition analytic system for escalators to support refurbishment decisions. The analytic system consists of four parts: 1) online data gathering and processing; 2) a dashboard for condition monitoring; 3) a health index model; and 4) remaining useful life prediction. The results can be used for a) predicting the remaining useful life of the escalators, in order to support asset replacement planning and b) monitoring the real-time condition of escalators; including alerts when vibration exceeds the threshold and signal diagnosis, giving an indication of possible root cause (components) of the alert signal.Comment: 14 pages, 12 figures, 7 table

    Carboxyl-terminal truncated HBx regulates a distinct microRNA transcription program in Hepatocellular carcinoma development

    Get PDF
    Background: The biological pathways and functional properties by which misexpressed microRNAs (miRNAs) contribute to liver carcinogenesis have been intensively investigated. However, little is known about the upstream mechanisms that deregulate miRNA expressions in this process. In hepatocellular carcinoma (HCC), hepatitis B virus (HBV) X protein (HBx), a transcriptional trans-activator, is frequently expressed in truncated form without carboxyl-terminus but its role in miRNA expression and HCC development is unclear. Methods: Human non-tumorigenic hepatocytes were infected with lentivirus-expressing full-length and carboxyl-terminal truncated HBx (Ct-HBx) for cell growth assay and miRNA profiling. Chromatin immunoprecipitation microarray was performed to identify the miRNA promoters directly associated with HBx. Direct transcriptional control was verified by luciferase reporter assay. The differential miRNA expressions were further validated in a cohort of HBV-associated HCC tissues using real-time PCR. Results: Hepatocytes expressing Ct-HBx grew significantly faster than the full-length HBx counterparts. Ct-HBx decreased while full-length HBx increased the expression of a set of miRNAs with growth-suppressive functions. Interestingly, Ct-HBx bound to and inhibited the transcriptional activity of some of these miRNA promoters. Notably, some of the examined repressed-miRNAs (miR-26a, -29c, -146a and -190) were also significantly down-regulated in a subset of HCC tissues with carboxyl-terminal HBx truncation compared to their matching non-tumor tissues, highlighting the clinical relevance of our data. Conclusion: Our results suggest that Ct-HBx directly regulates miRNA transcription and in turn promotes hepatocellular proliferation, thus revealing a viral contribution of miRNA deregulation during hepatocarcinogenesis. © 2011 Yip et al.published_or_final_versio

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Metabolic transistor in bacteria

    No full text
    The disclosure relates to a metabolic transistor in microbes such as bacteria and yeast where a competitive pathway is introduced to compete with a product pathway for available carbon so as to control the carbon flux in the microbe
    corecore