25 research outputs found

    Higher Dispersion Measures of Conduction and Repolarization in Type 1 Compared to Non-type 1 Brugada Syndrome Patients: An Electrocardiographic Study From a Single Center

    Get PDF
    Background: Brugada syndrome (BrS) is a cardiac ion channelopathy that predisposes affected individuals to sudden cardiac death (SCD). Type 1 BrS is thought to take a more malignant clinical course than non-type 1 BrS. We hypothesized that the degrees of abnormal repolarization and conduction are greater in type 1 subjects and these differences can be detected by electrocardiography (ECG).Methods: Electrocardiographic data from spontaneous type 1 and non-type 1 BrS patients were analyzed. ECG parameters were measured from leads V1 to V3. Values were expressed as median [lower quartile-upper quartile] and compared using Kruskal-Wallis ANOVA.Results: Compared to non-type 1 BrS patients (n = 29), patients with spontaneous type 1 patterns (n = 22) showed similar (P > 0.05) heart rate (73 [64–77] vs. 68 [62–80] bpm), QRS duration (136 [124–161] vs. 127 [117–144] ms), uncorrected QT (418 [393–443] vs. 402 [386–424] ms) and corrected QT intervals (457 [414–474] vs. 430 [417–457] ms), JTpeak intervals (174 [144–183] vs. 174 [150–188] ms), Tpeak− Tend intervals (101 [93–120] vs. 99 [90–105] ms), Tpeak− Tend/QT ratios (0.25 [0.23–0.27] vs. 0.24 [0.22–0.27]), Tpeak− Tend/QRS (0.77 [0.62–0.87] vs. 0.77 [0.69–0.86]), Tpeak− Tend/(QRS × QT) (0.00074 [0.00034–0.00096] vs. 0.00073 [0.00048–0.00012] ms−1), index of Cardiac Electrophysiological Balance (iCEB, QT/QRS, marker of wavelength: 3.14 [2.56–3.35] vs. 3.21 [2.85–3.46]) and corrected iCEB (QTc/QRS: 3.25 [2.91–3.73] vs. 3.49 [2.99–3.78]). Higher QRS dispersion was seen in type 1 subjects (QRSd: 34 [24–66] vs. 24 [12–34] ms) but QT dispersion (QTd: 48 [39–71] vs. 43 [22–94] ms), QTc dispersion (QTcd: 52 [41–79] vs. 46 [23–104] ms), JTpeak dispersion (44 [23–62] vs. 45 [30–62] ms), Tpeak− Tend dispersion (28 [15–34] vs. 29 [22–53] ms) or Tpeak− Tend/QT dispersion (0.06 [0.03–0.08] vs. 0.08 [0.04–0.12]) did not differ between the two groups. Type 1 subjects showed higher (QRSd × Tpeak− Tend)/QRS (25 [19–44] vs. 19 [9–30] ms) but similar iCEB dispersion (0.83 [0.49–1.14] vs. 0.61 [0.34–0.92]) and iCEBc dispersion (0.93 [0.51–1.15] vs. 0.65 [0.39–0.96]).Conclusion: Higher levels of dispersion in conduction and repolarization are found in type 1 than non-type 1 BrS patients, potentially explaining the higher incidence of ventricular arrhythmias in the former group

    Risk stratification of sudden cardiac death in asymptomatic female Brugada syndrome patients: A literature review

    Get PDF
    Background and Objectives: Risk stratification in Brugada syndrome remains a difficult problem. Given the male predominance of this disease and their elevated risks of arrhythmic events, affected females have received less attention. It is widely known that symptomatic patients are at increased risk of sudden cardiac death (SCD) than asymptomatic patients, while this might be true in the male population; recent studies have shown that this association might not be significant in females. Over the past few decades, numerous markers involving clinical symptoms, electrocardiographic (ECG) indices, and genetic tests have been explored, with several risk-scoring models developed so far. The objective of this study is to review the current evidence of clinical and ECG markers as well as risk scores on asymptomatic females with Brugada syndrome. Findings: Gender differences in ECG markers, the yield of genetic findings, and the applicability of risk scores are highlighted. Conclusions: Various clinical, electrocardiographic, and genetic risk factors are available for assessing SCD risk amongst asymptomatic female BrS patients. However, due to the significant gender discrepancy in BrS, the SCD risk amongst females is often underestimated, and there is a lack of research on female-specific risk factors and multiparametric risk scores. Therefore, multinational studies pooling female BrS patients are needed for the development of a gender-specific risk stratification approach amongst asymptomatic BrS patients

    Diagnostic and prognostic value of serum C-reactive protein in heart failure with preserved ejection fraction:a systematic review and meta-analysis

    Get PDF
    Heart failure (HF) is a major epidemic with rising morbidity and mortality rates that encumber global healthcare systems. While some studies have demonstrated the value of CRP in predicting (i) the development of HFpEF and (ii) long-term clinical outcomes in HFpEF patients, others have shown no such correlation. As a result, we conducted the following systematic review and meta-analysis to assess both the diagnostic and prognostic role of CRP in HFpEF. PubMed and Embase were searched for studies that assess the relationship between CRP and HFpEF using the following search terms: (((C-reactive protein) AND ((preserved ejection fraction) OR (diastolic heart failure))). The search period was from the start of database to August 6, 2019, with no language restrictions. A total of 312 and 233 studies were obtained from PubMed and Embase respectively, from which 19 studies were included. Our meta-analysis demonstrated the value of a high CRP in predicting the development of not only new onset HFpEF (HR: 1.08; 95% CI: 1.00–1.16; P = 0.04; I 2 = 22%), but also an increased risk of cardiovascular mortality when used as a categorical (HR: 2.52; 95% CI: 1.61–3.96; P < 0.0001; I 2 = 19%) or a continuous variable (HR: 1.24; 95% CI: 1.04–1.47; P = 0.01; I 2 = 28%), as well as all-cause mortality when used as a categorical (HR: 1.78; 95% CI: 1.53–2.06; P < 0.00001; I 2 = 0%) or a continuous variable: (HR: 1.06; 95% CI: 1.02–1.06; P = 0.003; I 2 = 61%) in HFpEF patients. CRP can be used as a biomarker to predict the development of HFpEF and long-term clinical outcomes in HFpEF patients, in turn justifying its use as a simple, accessible parameter to guide clinical management in this patient population. However, more prospective studies are still required to not only explore the utility and dynamicity of CRP in HFpEF but also to determine whether risk stratification algorithms incorporating CRP actually provide a material benefit in improving patient prognosis

    Association between gout and atrial fibrillation: A meta-analysis of observational studies

    Get PDF
    Background: Gout is a systemic inflammatory arthritis characterized by the deposition of monosodium urate crystals due to hyperuricemia. Previous studies have explored the link between gout and atrial fibrillation (AF). Given the increasing prevalence and incidence of gout, there is a need to quantify the relationship between gout and the risk of AF. Therefore, we conducted a systematic review and meta-analysis on this topic. Methods: PubMed and Embase were searched for studies that reported the association between gout and AF using the following search term: (‘Gout’ and ‘Arrhythmia’). The search period was from the start of the database to 3rd August 2018 with no language restrictions. Results: A total of 75 and 22 articles were retrieved from PubMed and Embase, respectively. Of these, four observational studies (three cohort studies, one case-control study) including 659,094 patients were included. Our meta-analysis demonstrated that gout was significantly associated with increased risk of AF (adjusted hazard ratio: 1.31; 95% confidence interval: 1.00-1.70; P = 0.05; I2 = 99%) after adjusting for significant comorbidities and confounders. Conclusions: Our meta-analysis confirms the significant relationship between gout and AF. More data are needed to determine whether this risk can be adequately reduced by urate-lowering therapy

    A territory-wide Study of arrhythmogenic right ventricular cardiomyopathy patients from Hong Kong

    Get PDF
    Background: Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is a hereditary disease characterized by fibrofatty infiltration of the right ventricular myocardium that predisposes affected patients to malignant ventricular arrhythmias, dual-chamber cardiac failure and sudden cardiac death (SCD). The present study aims to investigate the risk of detrimental cardiovascular events in an Asian population of ARVC/D patients, including the incidence of malignant ventricular arrhythmias, new-onset heart failure with reduced ejection fraction (HFrEF), as well as long-term mortality. Methods and Results: This was a territory-wide retrospective cohort study of patients diagnosed with ARVC/D between 1997 and 2019 in Hong Kong. This study consisted of 109 ARVC/D patients (median age: 61 [46–71] years; 58% male). Of these, 51 and 24 patients developed incident VT/VF and new-onset HFrEF, respectively. Five patients underwent cardiac transplantation, and 14 died during follow-up. Multivariate Cox regression identified prolonged QRS duration as a predictor of VT/VF (p <0.05). Female gender, prolonged QTc duration, the presence of epsilon waves and T-wave inversion (TWI) in any lead except aVR/V1 predicted new-onset HFrEF (p <0.05). The presence of epsilon waves, in addition to the parameters of prolonged QRS duration and worsening ejection fraction predicted all-cause mortality (p <0.05). Clinical scores were developed to predict incident VT/VF, new-onset HFrEF and all-cause mortality, and all were significantly improved by machine learning techniques. Conclusions: Clinical and electrocardiographic parameters are important for assessing prognosis in ARVC/D patients and should in turn be used in tandem to aid risk stratification in the hospital setting

    Historical perspective and recent progress in cardiac ion channelopathies research and clinical practice in Hong Kong

    Get PDF
    Cardiac ion channelopathies encompass a set of inherited or acquired conditions that are due to dysfunction in ion channels or their associated proteins, typically in the presence of structurally normal hearts. They are associated with the development of ventricular arrhythmias and sudden cardiac death. The aim of this review is to provide a historical perspective and recent advances in the research of the cardiac ion channelopathies, Brugada syndrome, long QT syndrome and catecholaminergic polymorphic ventricular tachycardia, in Hong Kong, China. In particular, recent works on the development of novel predictive models incorporating machine learning techniques to improve risk stratification are outlined. The availability of linked records of affected patients with good longitudinal data in the public sector, together with multidisciplinary collaborations, implies that ion channelopathy research efforts have advanced significantly

    Territory-wide cohort study of Brugada syndrome in Hong Kong: predictors of long-term outcomes using random survival forests and non-negative matrix factorisation

    Get PDF
    Objectives: Brugada syndrome (BrS) is an ion channelopathy that predisposes affected patients to spontaneous ventricular tachycardia/fibrillation (VT/VF) and sudden cardiac death. The aim of this study is to examine the predictive factors of spontaneous VT/VF. Methods: This was a territory-wide retrospective cohort study of patients diagnosed with BrS between 1997 and 2019. The primary outcome was spontaneous VT/VF. Cox regression was used to identify significant risk predictors. Non-linear interactions between variables (latent patterns) were extracted using non-negative matrix factorisation (NMF) and used as inputs into the random survival forest (RSF) model. Results: This study included 516 consecutive BrS patients (mean age of initial presentation=50±16 years, male=92%) with a median follow-up of 86 (IQR: 45–118) months. The cohort was divided into subgroups based on initial disease manifestation: asymptomatic (n=314), syncope (n=159) or VT/VF (n=41). Annualised event rates per person-year were 1.70%, 0.05% and 0.01% for the VT/VF, syncope and asymptomatic subgroups, respectively. Multivariate Cox regression analysis revealed initial presentation of VT/VF (HR=24.0, 95% CI=1.21 to 479, p=0.037) and SD of P-wave duration (HR=1.07, 95% CI=1.00 to 1.13, p=0.044) were significant predictors. The NMF-RSF showed the best predictive performance compared with RSF and Cox regression models (precision: 0.87 vs 0.83 vs. 0.76, recall: 0.89 vs. 0.85 vs 0.73, F1-score: 0.88 vs 0.84 vs 0.74). Conclusions: Clinical history, electrocardiographic markers and investigation results provide important information for risk stratification. Machine learning techniques using NMF and RSF significantly improves overall risk stratification performance

    Quantification of Beat-To-Beat Variability of Action Potential Durations in Langendorff-Perfused Mouse Hearts

    Get PDF
    Background: Beat-to-beat variability in action potential duration (APD) is an intrinsic property of cardiac tissue and is altered in pro-arrhythmic states. However, it has never been examined in mice.Methods: Left atrial or ventricular monophasic action potentials (MAPs) were recorded from Langendorff-perfused mouse hearts during regular 8 Hz pacing. Time-domain, frequency-domain and non-linear analyses were used to quantify APD variability.Results: Mean atrial APD (90% repolarization) was 23.5 ± 6.3 ms and standard deviation (SD) was 0.9 ± 0.5 ms (n = 6 hearts). Coefficient of variation (CoV) was 4.0 ± 1.9% and root mean square (RMS) of successive differences in APDs was 0.3 ± 0.2 ms. The peaks for low- and high-frequency were 0.7 ± 0.5 and 2.7 ± 0.9 Hz, respectively, with percentage powers of 39.0 ± 20.5 and 59.3 ± 22.9%. Poincaré plots of APDn+1 against APDn revealed ellipsoid shapes. The ratio of the SD along the line-of-identity (SD2) to the SD perpendicular to the line-of-identity (SD1) was 8.28 ± 4.78. Approximate and sample entropy were 0.57 ± 0.12 and 0.57 ± 0.15, respectively. Detrended fluctuation analysis revealed short- and long-term fluctuation slopes of 1.80 ± 0.15 and 0.85 ± 0.29, respectively. When compared to atrial APDs, ventricular APDs were longer (ANOVA, P &lt; 0.05), showed lower mean SD and CoV but similar RMS of successive differences in APDs and showed lower SD2 (P &lt; 0.05). No difference in the remaining parameters was observed.Conclusion: Beat-to-beat variability in APD is observed in mouse hearts during regular pacing. Atrial MAPs showed greater degree of variability than ventricular MAPs. Non-linear techniques offer further insights on short-term and long-term variability and signal complexity
    corecore