71 research outputs found

    Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP

    Full text link
    Using the OPAL detector at LEP, the running of the effective QED coupling alpha(t) is measured for space-like momentum transfer from the angular distribution of small-angle Bhabha scattering. In an almost ideal QED framework, with very favourable experimental conditions, we obtain: Delta alpha(-6.07GeV^2) - Delta alpha(-1.81GeV^2) = (440 pm 58 pm 43 pm 30) X 10^-5, where the first error is statistical, the second is the experimental systematic and the third is the theoretical uncertainty. This agrees with current evaluations of alpha(t).The null hypothesis that alpha remains constant within the above interval of -t is excluded with a significance above 5sigma. Similarly, our results are inconsistent at the level of 3sigma with the hypothesis that only leptonic loops contribute to the running. This is currently the most significant direct measurment where the running alpha(t) is probed differentially within the measured t range.Comment: 43 pages, 12 figures, Submitted to Euro. Phys. J.

    A Measurement of Rb using a Double Tagging Method

    Get PDF
    The fraction of Z to bbbar events in hadronic Z decays has been measured by the OPAL experiment using the data collected at LEP between 1992 and 1995. The Z to bbbar decays were tagged using displaced secondary vertices, and high momentum electrons and muons. Systematic uncertainties were reduced by measuring the b-tagging efficiency using a double tagging technique. Efficiency correlations between opposite hemispheres of an event are small, and are well understood through comparisons between real and simulated data samples. A value of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is statistical and the second systematic. The uncertainty on Rc, the fraction of Z to ccbar events in hadronic Z decays, is not included in the errors. The dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the deviation of Rc from the value 0.172 predicted by the Standard Model. The result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European Physical Journal

    Measurement of the B+ and B-0 lifetimes and search for CP(T) violation using reconstructed secondary vertices

    Get PDF
    The lifetimes of the B+ and B-0 mesons, and their ratio, have been measured in the OPAL experiment using 2.4 million hadronic Z(0) decays recorded at LEP. Z(0) --> b (b) over bar decays were tagged using displaced secondary vertices and high momentum electrons and muons. The lifetimes were then measured using well-reconstructed charged and neutral secondary vertices selected in this tagged data sample. The results aretau(B+) = 1.643 +/- 0.037 +/- 0.025 pstau(Bo) = 1.523 +/- 0.057 +/- 0.053 pstau(B+)/tau(Bo) = 1.079 +/- 0.064 +/- 0.041,where in each case the first error is statistical and the second systematic.A larger data sample of 3.1 million hadronic Z(o) decays has been used to search for CP and CPT violating effects by comparison of inclusive b and (b) over bar hadron decays, No evidence fur such effects is seen. The CP violation parameter Re(epsilon(B)) is measured to be Re(epsilon(B)) = 0.001 +/- 0.014 +/- 0.003and the fractional difference between b and (b) over bar hadron lifetimes is measured to(Delta tau/tau)(b) = tau(b hadron) - tau((b) over bar hadron)/tau(average) = -0.001 +/- 0.012 +/- 0.008

    Association between high-dose erythropoiesis-stimulating agents, inflammatory biomarkers, and soluble erythropoietin receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-dose erythropoiesis-stimulating agents (ESA) for anemia of chronic kidney disease (CKD) have been associated with adverse clinical outcomes and do not always improve erythropoiesis. We hypothesized that high-dose ESA requirement would be associated with elevated inflammatory biomarkers, decreased adipokines, and increased circulating, endogenous soluble erythropoietin receptors (sEpoR).</p> <p>Methods</p> <p>A cross-sectional cohort of anemic 32 CKD participants receiving ESA were enrolled at a single center and cytokine profiles, adipokines, and sEpoR were compared between participants stratified by ESA dose requirement (usual-dose darbepoetin-α (< 1 μg/kg/week) and high-dose (≥1 μg/kg/week)).</p> <p>Results</p> <p>Baseline characteristics were similar between groups; however, hemoglobin was lower among participants on high-dose (1.4 μg/kg/week) vs usual-dose (0.5 μg/kg/week) ESA.</p> <p>In adjusted analyses, high-dose ESA was associated with an increased odds for elevations in c-reactive protein and interleukin-6 (p < 0.05 for both). There was no correlation between high-dose ESA and adipokines. Higher ESA dose correlated with higher levels of sEpoR (r<sub>s </sub>= 0.39, p = 0.03). In adjusted analyses, higher ESA dose (per μcg/kg/week) was associated with a 53% greater odds of sEpoR being above the median (p < 0.05).</p> <p>Conclusion</p> <p>High-dose ESA requirement among anemic CKD participants was associated with elevated inflammatory biomarkers and higher levels of circulating sEpoR, an inhibitor of erythropoiesis. Further research confirming these findings is warranted.</p> <p>Trial registration</p> <p>Clinicaltrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT00526747">NCT00526747</a></p

    Search for the standard model Higgs boson at LEP

    Get PDF

    Measurement of the W+W−γW^{+}W^{-} \gamma Cross-section and First direct Limits on Anomalous Electroweak Quartic Gauge Couplings

    Get PDF
    A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183pb^-1 of data recorded at root{s}=189GeV. From these data, 17 W+W-gamma candidates are selected with photon energy greater than 10GeV, consistent with the Standard Model expectation. These events are used to measure the e+e- to W+W-gamma cross-section within a set of geometric and kinematic cuts; sigma{W+W-gamma} = 136+-37+-8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the {W+ W- gamma gamma} and {W+ W- gamma Z0} vertices: -0.070GeV^{-2} < a_0/Lambda^2 < 0.070GeV^{-2}, -0.13GeV^{-2} < a_c/Lambda^2 < 0.19GeV^{-2}, -0.61GeV^{-2} < a_n/Lambda^2 < 0.57GeV^{-2}, where Lambda represents the energy scale for new physics.A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183pb^-1 of data recorded at root{s}=189GeV. From these data, 17 W+W-gamma candidates are selected with photon energy greater than 10GeV, consistent with the Standard Model expectation. These events are used to measure the e+e- to W+W-gamma cross-section within a set of geometric and kinematic cuts; sigma{W+W-gamma} = 136+-37+-8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the {W+ W- gamma gamma} and {W+ W- gamma Z0} vertices: -0.070GeV^{-2} < a_0/Lambda^2 < 0.070GeV^{-2}, -0.13GeV^{-2} < a_c/Lambda^2 < 0.19GeV^{-2}, -0.61GeV^{-2} < a_n/Lambda^2 < 0.57GeV^{-2}, where Lambda represents the energy scale for new physics.A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183pb^-1 of data recorded at root{s}=189GeV. From these data, 17 W+W-gamma candidates are selected with photon energy greater than 10GeV, consistent with the Standard Model expectation. These events are used to measure the e+e- to W+W-gamma cross-section within a set of geometric and kinematic cuts; sigma{W+W-gamma} = 136+-37+-8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the {W+ W- gamma gamma} and {W+ W- gamma Z0} vertices: -0.070GeV^{-2} < a_0/Lambda^2 < 0.070GeV^{-2}, -0.13GeV^{-2} < a_c/Lambda^2 < 0.19GeV^{-2}, -0.61GeV^{-2} < a_n/Lambda^2 < 0.57GeV^{-2}, where Lambda represents the energy scale for new physics.A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183pb^-1 of data recorded at root{s}=189GeV. From these data, 17 W+W-gamma candidates are selected with photon energy greater than 10GeV, consistent with the Standard Model expectation. These events are used to measure the e+e- to W+W-gamma cross-section within a set of geometric and kinematic cuts; sigma{W+W-gamma} = 136+-37+-8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the {W+ W- gamma gamma} and {W+ W- gamma Z0} vertices: -0.070GeV^{-2} < a_0/Lambda^2 < 0.070GeV^{-2}, -0.13GeV^{-2} < a_c/Lambda^2 < 0.19GeV^{-2}, -0.61GeV^{-2} < a_n/Lambda^2 < 0.57GeV^{-2}, where Lambda represents the energy scale for new physics.A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183pb^-1 of data recorded at root{s}=189GeV. From these data, 17 W+W-gamma candidates are selected with photon energy greater than 10GeV, consistent with the Standard Model expectation. These events are used to measure the e+e- to W+W-gamma cross-section within a set of geometric and kinematic cuts; sigma{W+W-gamma} = 136+-37+-8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the {W+ W- gamma gamma} and {W+ W- gamma Z0} vertices: -0.070GeV^{-2} < a_0/Lambda^2 < 0.070GeV^{-2}, -0.13GeV^{-2} < a_c/Lambda^2 < 0.19GeV^{-2}, -0.61GeV^{-2} < a_n/Lambda^2 < 0.57GeV^{-2}, where Lambda represents the energy scale for new physics.A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183pb^-1 of data recorded at root{s}=189GeV. From these data, 17 W+W-gamma candidates are selected with photon energy greater than 10GeV, consistent with the Standard Model expectation. These events are used to measure the e+e- to W+W-gamma cross-section within a set of geometric and kinematic cuts; sigma{W+W-gamma} = 136+-37+-8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the {W+ W- gamma gamma} and {W+ W- gamma Z0} vertices: -0.070GeV^{-2} < a_0/Lambda^2 < 0.070GeV^{-2}, -0.13GeV^{-2} < a_c/Lambda^2 < 0.19GeV^{-2}, -0.61GeV^{-2} < a_n/Lambda^2 < 0.57GeV^{-2}, where Lambda represents the energy scale for new physics.A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183pb^-1 of data recorded at root{s}=189GeV. From these data, 17 W+W-gamma candidates are selected with photon energy greater than 10GeV, consistent with the Standard Model expectation. These events are used to measure the e+e- to W+W-gamma cross-section within a set of geometric and kinematic cuts; sigma{W+W-gamma} = 136+-37+-8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the {W+ W- gamma gamma} and {W+ W- gamma Z0} vertices: -0.070GeV^{-2} < a_0/Lambda^2 < 0.070GeV^{-2}, -0.13GeV^{-2} < a_c/Lambda^2 < 0.19GeV^{-2}, -0.61GeV^{-2} < a_n/Lambda^2 < 0.57GeV^{-2}, where Lambda represents the energy scale for new physics.A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183pb^-1 of data recorded at root{s}=189GeV. From these data, 17 W+W-gamma candidates are selected with photon energy greater than 10GeV, consistent with the Standard Model expectation. These events are used to measure the e+e- to W+W-gamma cross-section within a set of geometric and kinematic cuts; sigma{W+W-gamma} = 136+-37+-8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the {W+ W- gamma gamma} and {W+ W- gamma Z0} vertices: -0.070GeV^{-2} < a_0/Lambda^2 < 0.070GeV^{-2}, -0.13GeV^{-2} < a_c/Lambda^2 < 0.19GeV^{-2}, -0.61GeV^{-2} < a_n/Lambda^2 < 0.57GeV^{-2}, where Lambda represents the energy scale for new physics.A study of W + W − events accompanied by hard photon radiation produced in e + e − collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183 pb −1 of data recorded at s =189 GeV. From these data, 17 W + W − γ candidates are selected with photon energy greater than 10 GeV, consistent with the Standard Model expectation. These events are used to measure the e + e − →W + W − γ cross-section within a set of geometric and kinematic cuts, σ ̂ WW γ =136±37±8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the W + W − γγ and W + W − γ Z 0 vertices: −0.070 GeV −

    Search for the Standard Model Higgs Boson with the OPAL Detector at LEP

    Get PDF
    This paper summarises the search for the Standard Model Higgs boson in e+e- collisions at centre-of-mass energies up to 209 GeV performed by the OPAL Collaboration at LEP. The consistency of the data with the background hypothesis and various Higgs boson mass hypotheses is examined. No indication of a signal is found in the data and a lower bound of 112.7GeV/C^2 is obtained on the mass of the Standard Model Higgs boson at the 95% CL.This paper summarises the search for the Standard Model Higgs boson in e+e- collisions at centre-of-mass energies up to 209 GeV performed by the OPAL Collaboration at LEP. The consistency of the data with the background hypothesis and various Higgs boson mass hypotheses is examined. No indication of a signal is found in the data and a lower bound of 112.7GeV/C^2 is obtained on the mass of the Standard Model Higgs boson at the 95% CL

    Ï„\tau decays with neutral kaons

    Get PDF
    The branching ratio of the tau lepton to a neutral K meson is measured from a sample of approximately 200,000 tau decays recorded by the OPAL detector at centre-of-mass energies near the Z0 resonance. The measurement is based on two samples which identify one-prong tau decays with KL and KS mesons. The combined branching ratios are measured to be B(tau- -->pi- K0bar nutau) = (9.33+-0.68+-0.49)x10^-3 B(tau- -->pi- K0bar [>=1pi0] nutau) = (3.24+-0.74+-0.66)x10^-3 B(tau- -->K- K0bar [>=0pi0] nutau) = (3.30+-0.55+-0.39)x10^-3 where the first error is statistical and the second systematic.The branching ratio of the tau lepton to a neutral K meson is measured from a sample of approximately 200,000 tau decays recorded by the OPAL detector at centre-of-mass energies near the Z0 resonance. The measurement is based on two samples which identify one-prong tau decays with KL and KS mesons. The combined branching ratios are measured to be B(tau- -->pi- K0bar nutau) = (9.33+-0.68+-0.49)x10^-3 B(tau- -->pi- K0bar [>=1pi0] nutau) = (3.24+-0.74+-0.66)x10^-3 B(tau- -->K- K0bar [>=0pi0] nutau) = (3.30+-0.55+-0.39)x10^-3 where the first error is statistical and the second systematic

    Transverse and Longitudinal Bose Einstein Correlations in hadronic Z0Z^0 Decays

    Get PDF
    Bose-Einstein correlations in pairs of identical charged pions produced in asample of 4.3 million Z0 hadronic decays are studied as a function of the threecomponents of the momentum difference, transverse ("out" and "side") andlongitudinal with respect to the thrust direction of the event. A significantdifference between the transverse, r_t_side, and longitudinal, r_l, dimensionsis observed, indicating that the emitting source of identical pions, asobserved in the Longitudinally CoMoving System, has an elongated shape. This isobserved with a variety of selection techniques. Specifically, the values ofthe parameters obtained by fitting the extended Goldhaber parametrisation tothe correlation function C'= C^{DATA}}/C^{MC} for two-jet events, selected withthe Durham algorithm and resolution parameter ycut=0.04, arer_t_out=(0.647+-0.011(stat})+0.022-0.124(syst)) fm,r_t_side=(0.809+-0.009(stat)+0.019-0.032}(syst)) fm, r_l=(0.989+-0.011(stat)+0.030-0.015(syst})) fm andr_l/r_t_side=1.222+- 0.027(stat})+0.075-0.012(syst). The results are discussedin the context of a recent model of Bose-Einstein correlations based on stringfragmentation.Bose-Einstein correlations in pairs of identical charged pions produced in a sample of 4.3 million Z0 hadronic decays are studied as a function of the three components of the momentum difference, transverse ("out" and "side") and longitudinal with respect to the thrust direction of the event. A significant difference between the transverse, r_t_side, and longitudinal, r_l, dimensions is observed, indicating that the emitting source of identical pions, as observed in the Longitudinally CoMoving System, has an elongated shape. This is observed with a variety of selection techniques. Specifically, the values of the parameters obtained by fitting the extended Goldhaber parametrisation to the correlation function C'= C^{DATA}}/C^{MC} for two-jet events, selected with the Durham algorithm and resolution parameter ycut=0.04, are r_t_out=(0.647+-0.011(stat})+0.022-0.124(syst)) fm, r_t_side=(0.809+-0.009(stat)+0.019-0.032}(syst)) fm, r_l=(0.989+-0.011(stat)+0.030-0.015(syst})) fm and r_l/r_t_side=1.222+-0.027(stat})+0.075-0.012(syst). The results are discussed in the context of a recent model of Bose-Einstein correlations based on string fragmentation
    • …
    corecore