12 research outputs found

    Integrating BDI agents with Agent-based simulation platforms

    Get PDF
    Agent-Based Models (ABMs) is increasingly being used for exploring and supporting decision making about social science scenarios involving modelling of human agents. However existing agent-based simulation platforms (e.g., SWARM, Repast) provide limited support for the simulation of more complex cognitive agents required by such scenarios. We present a framework that allows Belief-Desire Intention (BDI) cognitive agents to be embedded in an ABM system. Architecturally, this means that the "brains" of an agent can be modelled in the BDI system in the usual way, while the "body" exists in the ABM system. The architecture is exible in that the ABM can still have non-BDI agents in the simulation, and the BDI-side can have agents that do not have a physical counterpart (such as an organisation). The framework addresses a key integration challenge of coupling event-based BDI systems, with time-stepped ABM systems. Our framework is modular and supports integration off-the-shelf BDI systems with off-the-shelf ABM systems. The framework is Open Source, and all integrations and applications are available for use by the modelling community

    From evolutionary computation to the evolution of things

    Get PDF
    Evolution has provided a source of inspiration for algorithm designers since the birth of computers. The resulting field, evolutionary computation, has been successful in solving engineering tasks ranging in outlook from the molecular to the astronomical. Today, the field is entering a new phase as evolutionary algorithms that take place in hardware are developed, opening up new avenues towards autonomous machines that can adapt to their environment. We discuss how evolutionary computation compares with natural evolution and what its benefits are relative to other computing approaches, and we introduce the emerging area of artificial evolution in physical systems

    Bedside breath tests in children with abdominal pain: a prospective pilot feasibility study

    Get PDF
    Background: There is no definitive method of accurately diagnosing appendicitis before surgery. We evaluated the feasibility of collecting breath samples in children with abdominal pain and gathered preliminary data on the accuracy of breath tests. Methods: We conducted a prospective pilot study at a large tertiary referral paediatric hospital in the UK. We recruited 50 participants with suspected appendicitis, aged between 5 and 15 years. Five had primary diagnosis of appendicitis. The primary outcome was the number of breath samples collected. We also measured the number of samples processed within 2 h and had CO2 ≥ 3.5%. Usability was assessed by patient-reported pain pre- and post-sampling and user-reported sampling difficulty. Logistic regression analysis was used to predict appendicitis and evaluated using the area under the receiver operator characteristic curve (AUROC). Results: Samples were collected from all participants. Of the 45 samples, 36 were processed within 2 h. Of the 49 samples, 19 had %CO2 ≥ 3.5%. No difference in patient-reported pain was observed (p = 0.24). Sampling difficulty was associated with patient age (p = 0.004). The logistic regression model had AUROC = 0.86. Conclusions: Breath tests are feasible and acceptable to patients presenting with abdominal pain in clinical settings. We demonstrated adequate data collection with no evidence of harm to patients. The AUROC was better than a random classifier; more specific sensors are likely to improve diagnostic performance. Trial registration: ClinicalTrials.gov, NCT03248102. Registered 14 Aug 2017
    corecore